
Beginning MLOps
with MLFlow

Deploy Models in AWS SageMaker,
Google Cloud, and Microsoft Azure
—
Sridhar Alla
Suman Kalyan Adari

Beginning MLOps
with MLFlow

Deploy Models in AWS
SageMaker, Google Cloud,

and Microsoft Azure

Sridhar Alla
Suman Kalyan Adari

Beginning MLOps with MLFlow

ISBN-13 (pbk): 978-1-4842-6548-2 ISBN-13 (electronic): 978-1-4842-6549-9
https://doi.org/10.1007/978-1-4842-6549-9

Copyright © 2021 by Sridhar Alla, Suman Kalyan Adari

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-6548-2. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Sridhar Alla
Delran, NJ, USA

Suman Kalyan Adari
Tampa, FL, USA

https://doi.org/10.1007/978-1-4842-6549-9

iii

Table of Contents

Chapter 1: Getting Started: Data Analysis ��1

Introduction and Premise ��1

Credit Card Data Set��10

Loading the Data Set ���11

Normal Data and Fraudulent Data ���16

Plotting ��19

Summary���39

Chapter 2: Building Models ��41

Introduction ���41

Scikit-Learn ��42

Data Processing���43

Model Training ���52

Model Evaluation ���53

Model Validation ��58

PySpark ���66

About the Authors ���vii

About the Technical Reviewer ���ix

Acknowledgments ���xi

Introduction ���xiii

iv

Data Processing���67

Model Training ���73

Model Evaluation ���74

Summary���77

Chapter 3: What Is MLOps? ��79

Introduction ���79

MLOps Setups ���87

Manual Implementation ���88

Continuous Model Delivery ��95

Continuous Integration/Continuous Delivery of Pipelines ����������������������������105

Pipelines and Automation ���113

Journey Through a Pipeline ���114

How to Implement MLOps ���122

Summary���124

Chapter 4: Introduction to MLFlow ���125

Introduction ���125

MLFlow with Scikit-Learn ���129

Data Processing���129

Training and Evaluating with MLFlow ��136

Logging and Viewing MLFlow Runs ���139

Model Validation (Parameter Tuning) with MLFlow��������������������������������������150

MLFlow and Other Frameworks ��170

MLFlow with TensorFlow 2�0 (Keras) ���170

MLFlow with PyTorch���183

MLFlow with PySpark ��199

Local Model Serving ���213

Table of ConTenTs

v

Deploying the Model ��213

Querying the Model ���216

Summary���226

Chapter 5: Deploying in AWS ��229

Introduction ���229

Configuring AWS ���232

Deploying a Model to AWS SageMaker ���238

Making Predictions ���243

Switching Models��247

Removing Deployed Model��250

Summary���251

Chapter 6: Deploying in Azure ��253

Introduction ���253

Configuring Azure ��255

Deploying to Azure (Dev Stage) ���261

Making Predictions ���263

Deploying to Production ��267

Making Predictions ���268

Cleaning Up ���270

Summary���272

Chapter 7: Deploying in Google ��275

Introduction ���275

Configuring Google ��277

Bucket Storage ��278

Configuring the Virtual Machine ��281

Configuring the Firewall ��288

Table of ConTenTs

vi

Deploying and Querying the Model ���292

Updating and Removing a Deployment ���298

Cleaning Up ���299

Summary���301

 Appendix: Databricks ���303

 Introduction ���303

 Running Experiments in Databricks ��305

 Deploying to Azure ��315

 Connecting to the Workspace ���316

 Querying the Model ���319

 MLFlow Model Registry ��322

 Summary���326

 Index ���327

Table of ConTenTs

vii

About the Authors

Sridhar Alla is the founder and CTO of

Bluewhale.one, the company behind the

product Sas2Py (www.sas2py.com), which

focuses on the automatic conversion of SAS

code to Python. Bluewhale also focuses on

using AI to solve key problems ranging from

intelligent email conversation tracking to

issues impacting the retail industry and more.

He has deep expertise in building AI-driven

big data analytical practices on both the public cloud and in-house

infrastructures. He is a published author of books and an avid presenter at

numerous Strata, Hadoop World, Spark Summit, and other conferences.

He also has several patents filed with the US PTO on large-scale computing

and distributed systems. He has extensive hands-on experience in most of

the prevalent technologies, including Spark, Flink, Hadoop, AWS, Azure,

TensorFlow, and others. He lives with his wife, Rosie, and daughters,

Evelyn and Madelyn, in New Jersey, United States, and in his spare time

loves to spend time training, coaching, and attending meetups. He can be

reached at sid@bluewhale.one.

http://www.sas2py.com

viii

Suman Kalyan Adari is a current Senior and

undergraduate researcher at the University

of Florida specializing in deep learning

and its practical use in various fields such

as computer vision, adversarial machine

learning, natural language processing

(conversational AI) , anomaly detection,

and more. He was a presenter at the IEEE

Dependable Systems and Networks International Conference workshop

on Dependable and Secure Machine Learning held in Portland, Oregon,

United States in June 2019. He is also a published author, having worked

on a book focusing on the uses of deep learning in anomaly detection.

He can be reached at sadari@ufl.edu.

abouT The auThors

ix

About the Technical Reviewer

Pramod Singh is a Manager, Data Science

at Bain & Company. He has over 11 years

of rich experience in the Data Science field

working with multiple product- and service-

based organizations. He has been part of

numerous ML and AI large scale projects. He

has published three books on large scale data

processing and machine learning. He is also a

regular speaker at major AI conferences such

as the O’Reilly AI & Strata conference.

xi

Acknowledgments

Sridhar Alla
I would like to thank my wonderful wife, Rosie Sarkaria, and my

beautiful, loving daughters, Evelyn and Madelyn, for all the love and

patience during the many months I spent writing this book. I would also

like to thank my parents, Ravi and Lakshmi Alla, for all the support and

encouragement they continue to bestow upon me.

Suman Kalyan Adari
I would like to thank my parents, Venkata and Jyothi Adari, and my

loving dog, Pinky, for supporting me throughout the entire process.

I would especially like to thank my sister, Niharika Adari, for helping me

with edits and proofreading and helping me write the appendix chapter.

xiii

Introduction

This book is intended for all audiences ranging from beginners at machine

learning, to advanced machine learning engineers, or even to machine

learning researchers who wish to learn how to better organize their

experiments.

The first two chapters cover the premise of the problem followed by

the book, which is that of integrating MLOps principles into an anomaly

detector model based on the credit card dataset. The third chapter covers

what MLOps actually is, how it works, and why it can be useful.

The fourth chapter goes into detail about how you can implement and

utilize MLFlow in your existing projects to reap the benefits of MLOps with

just a few lines of code.

The fifth, sixth, and seventh chapters all go over how you can

operationalize your model and deploy it on AWS, Microsoft Azure, and

Google Cloud, respectively. The seventh chapter goes over how you

can host a model on a virtual machine and connect to the server from

an external source to make your predictions, so should any MLFlow

functionality described in the book become outdated, you can always go

for this approach and simply serve models on some cluster on the cloud.

The last chapter, Appendix, goes over how you can utilize Databricks,

the creators of MLFlow, to organize your MLFlow experiments and deploy

your models.

The goal of the book is to hopefully impart to you, the reader,

knowledge of how you can use the power of MLFlow to easily integrate

MLOps principles into your existing projects. Furthermore, we hope that

you will become more familiar with how you can deploy your models to

the cloud, allowing you to make model inferences anywhere on the planet

so as long as you are able to connect to the cloud server hosting the model.

xiv

At the very least, we hope that more people do begin to adopt MLFlow

and integrate it into their workflows, since even as a tool to organize your

workspace, it massively improves the management of your machine

learning experiments and allows you to keep track of the entire model

history of a project.

Researchers may find MLFlow to be useful when conducting

experiments, as it allows you to log plots on top of any custom-defined

metric of your choosing. Prototyping becomes much easier, as you can

now keep track of that one model which worked perfectly as a proof-of-

concept and revert back to those same weights at any time while you keep

tuning the hyperparameters. Hyperparameter tuning becomes much

simpler and more organized, allowing you to run a complex script that

searches over several different hyperparameters at once and log all of the

results using MLFlow.

With all the benefits that MLFlow and the corresponding MLOps

principles offer to machine learning enthusiasts of all professions, there

really are no downsides to integrating it into current work environments.

With that, we hope you enjoy the rest of the book!

InTroduCTIon

1© Sridhar Alla, Suman Kalyan Adari 2021
S. Alla and S. K. Adari, Beginning MLOps with MLFlow,
https://doi.org/10.1007/978-1-4842-6549-9_1

CHAPTER 1

Getting Started: Data
Analysis
In this chapter, we will go over the premise of the problem we are attempting

to solve with the machine learning solution we want to operationalize. We

will also begin data analysis and feature engineering of our data set.

 Introduction and Premise
Welcome to Beginning MLOps with MLFlow! In this book, we will be taking

an example problem, developing a machine learning solution to it, and

operationalizing our model on AWS SageMaker, Microsoft Azure, Google

Cloud, and Datarobots. The problem we will be looking at is the issue of

performing anomaly detection on a credit card data set. In this chapter, we

will explore this data set and show the overall structure while explaining a

few techniques on analyzing this data. This data set can be found at

www.kaggle.com/mlg-ulb/creditcardfraud.

If you are already familiar with how to analyze data and build machine

learning models, feel free to grab the data set and skip ahead to 3 to jump

right into MLOps.

https://doi.org/10.1007/978-1-4842-6549-9_1#DOI
http://www.kaggle.com/mlg-ulb/creditcardfraud

2

Otherwise, we will first go over the general process of how machine

learning solutions are generally created. The process goes something

like this:

 1. Identification of the problem: First of all, you need

to have an idea of what the problem is, what can be

done about it, what has been done about it, and why

it is a problem worth solving.

Here’s an example of a problem: an invasive snake

species harmful to the local environment has

infested a region. This species is highly venomous

and looks very similar to a harmless species of snake

native to this same environment. Furthermore,

the invasive species is destructive to the local

environment and is outcompeting the local species.

In response, the local government has issued a

statement encouraging citizens to go out and kill

the venomous, invasive species on sight, but the

problem is that it turns out citizens have been killing

the local species as well due to how easy it is to

confuse the two species.

What can be done about this? A possible solution

is to use the power of machine learning and build

an application to help citizens identify the snake

species. What has been done about it? Perhaps

someone released an app that does a poor job at

distinguishing the two species, which doesn’t help

remedy the current situation. Perhaps fliers have

been given out, but it can be hard to identify every

member of a species correctly based on just one

picture.

Chapter 1 GettinG Started: data analySiS

3

Why is it a problem worth solving? The native

species is important to the local environment.

Killing the wrong species can end up exacerbating

the situation and lead to the invasive species

claiming the environment over the native

species. And so building a computer vision-based

application that can discern between the various

snake species (and especially the two species

relevant to the problem) could be a great way to help

citizens get rid of the right snake species.

 2. Collection of data: After you’ve identified the

problem, you want to collect the relevant data.

In the context of the snake species classification

problem, you want to find images of various snake

species in your region. The location depends on

how big of a scale your project will operate on. Is it

going to identify any snake in the world? Just snakes

in Florida?

If you can afford to do so, the more data you collect,

the better the potential training outcomes will be.

More training examples can introduce increased

variety to your model, making it better in the long

run. Deep learning models scale in performance with

large volumes of data, so keep that in mind as well.

 3. Data analysis: Once you’ve collected all the raw

data, you want to clean it up, process it, and format

it in a way that allows you to analyze the data better.

For images, this could be something like applying an

algorithm to crop out unnecessary parts of the image

to focus solely on the snake. Additionally, maybe

Chapter 1 GettinG Started: data analySiS

4

you want to center-crop the image to remove all the

extra visual information in the data sample. Either

way, raw image data is rarely ever in good enough

condition to be used directly; it almost always

requires processing to get the relevant data you want.

For unstructured data like images, formatting this

data in a way good enough to analyze it could be

something like creating a directory with all of the

respective snake species and the relevant image

data. From there, you can look at the count of

images for each snake species class that you have

and determine if you need to retrieve more samples

for a particular species or not.

For structured data, say the credit-card data set,

processing the raw data can mean something like

getting rid of any entries with null values in them.

Formatting them in a way so you can analyze

them better can involve dimensionality-reduction

techniques such as principal component analysis

(PCA). Note: It turns out that most of the data in the

credit card data set has actually been processed with

PCA in part to preserve the privacy of the users the

data has been extracted from.

As for the analysis, you can construct multiple

graphs of different features to get an idea of the

overall distribution and how the features look

plotted against each other. This way, you can see any

significant relationships between certain features

that you might keep in mind when creating your

training data.

Chapter 1 GettinG Started: data analySiS

5

There are some tools you can use in order to find

out what features have the greatest influence on

the label, such as phi-k correlation. By allowing

you to see the different correlation values between

the individual features and the target label, you can

gain a deeper understanding of the relationships

between the features in this data set. If needed, you

can also drop features that aren’t very influential

from the data. In this step, you really want to get a

solid understanding of your data so you can apply a

model architecture that is most suitable for it.

 4. Feature engineering and data processing: Now you

can use the knowledge you gained from analyzing

the various features and their relationships to each

another to potentially construct new features from

combinations of several existing ones. For example,

the Titanic data set is a great example that you can

apply feature engineering to. In this case, you can take

information such as class, age, fare, number of siblings,

number of parents, and so on to create as many

features as you can think up.

Feature engineering is really about giving your

model a deeper context so it can learn the task

better. You don’t necessarily want to create random

features for the sake of it, but something that’s

potentially relevant like number of female relatives,

for example. (Since females were more likely

to survive the sinking of the Titanic, could it be

possible that if a person had more female relatives,

they were less likely to survive as preference was

given to their female relatives instead?)

Chapter 1 GettinG Started: data analySiS

6

The next step after feature engineering is data

processing, which is a step involving all preparations

made to process the data to be passed into the model.

In the context of the snake species image data, this

could involve normalizing all the values to be between

0 and 1 as well as “batching” the data into groups.

This step also usually creates several subsets of

your initial data: a training data set, a testing data
set, and a validation data set. We will go into more

detail on the purpose of each of these data sets

later. For now, a training data set contains the data

you want the model to learn from, the testing data
set contains data you want to evaluate the model’s

performance on, and the validation data set is

used to either select a model or help tune a model’s

hyperparameters to draw out a better performance.

 5. Build the model: Now that the data processing

is done, this step is all about selecting the proper

architecture and building the model. For the snake

species image data, a good choice would be to use a

convolutional neural network (CNN) because they

work very well for any tasks involving images. From

there, it is up to you to define the specific architecture

of the model with respect to its layer composition.

 6. Training, evaluating, and validating: When you’re

training your CNN model, you’re usually passing in

batches of data until the entire data makes a full pass

through the model. From the results of this “forward

pass,” calculations are made that tell the model how to

adjust the weights as they are made going backwards

across the network in what’s called the “backward

Chapter 1 GettinG Started: data analySiS

7

pass.” The training process is essentially where the

model learns how to perform the task and gets better

at it the more examples it sees.

After the training process, either the evaluation step

or the validation step can come next. As long as the

testing set and validation set come from different

distributions (the validation set can be derived from

the training set, while the testing set can be derived

from the original data), the model is technically seeing

new data in the evaluation and validation processes.

The model will never learn anything from the

evaluation data, so you can test your model anytime.

Model evaluation is where the model’s performance

metrics such as accuracy, precision, recall, and so on are

evaluated on a data set that it has never seen before. We

will go into more detail on the evaluation step once it

becomes more relevant in the next chapter, Chapter 2.

Depending on the context, the exact purpose of

validation can differ, along with the question of

whether or not evaluation should be performed first

after training. Let’s define several sample scenarios

where you would use validation:

• Selecting a model architecture: Of several

model types or architectures, you use k-fold

cross-validation, for example, to quickly train and

evaluate each of the models on some data partition

of the validation set to get an idea of how they are

performing. This way, you can get a good idea of

which model is performing best, allowing you to pick

a model and continue with the rest of the process.

Chapter 1 GettinG Started: data analySiS

8

• Selecting the best model: Of several trained

models, you can use something like k-fold cross-

validation to quickly evaluate each model on the

validation data to allow you to get an idea of which

ones are performing best.

• Tuning hyperparameters: Quickly train a model

and test it with different hyperparameter setups to

get an idea of which configurations work better. You

can start with a broad range of hyperparameters.

From there, you can use the results to narrow

the range of hyperparameters until you get to a

configuration where you are satisfied. Models

in deep learning, for example, can have many

hyperparameters, so using validation to tune those

hyperparameters can work well in deep learning

settings. Just beware of diminishing returns. After a

certain precision with the hyperparameter setting,

you’re not going to see that big of a performance

boost in the model.

• Indication of high variance: This validation data

is slightly different from the other three examples.

In the case of neural networks, this data is derived

from a small split of the training data. After one full

pass of the training data, the model evaluates on

this validation data to calculate metrics such as loss

and accuracy.

If your training accuracy is high and training loss

is low, but the validation accuracy is low and the

validation loss is high, that’s an indication that

your model suffers from high variance. What

Chapter 1 GettinG Started: data analySiS

9

this means is that your model has not learned to

generalize what it is “learning” to new data, as the

validation data in this case is comprised of data it

has never seen before. In other words, your model

is overfitting. The model just isn’t recreating the

kind of performance it gets on the training data on

new data that it hasn’t seen before.

If your model has poor training accuracy and high

training loss, then your model suffers from high
bias, meaning it isn’t learning how to perform the

task correctly on the training data at all.

This little validation split during the training

process can give you an early indication of when

overfitting is occurring.

 7. Predicting: Once the model has been trained,

evaluated, and validated, it is then ready to make

predictions. In the context of the snake species

detector, this step involves passing in visual images

of the snake in question to get some prediction back.

For example, if the model is supposed to detect

the snake, draw a box around it, and label it (in an

object detection task), it will do so and display the

results in real time in the application.

If it just classifies the snake in the picture, the user

simply sends their photo of a snake to the model

(via the application) to get a species classification

prediction along with perhaps a probability

confidence score.

Hopefully now you have a better idea of what goes on when creating

machine learning solutions.

Chapter 1 GettinG Started: data analySiS

10

With all that in mind, let’s get started on the example, where you will

use the credit card data set to build simple anomaly detection models

using the data.

 Credit Card Data Set
Before you perform any data analysis, you need to first collect your data.

Once again, the data set can be found at the following link: www.kaggle.

com/mlg-ulb/creditcardfraud.

Following the link, you should see something like the following in

Figure 1-1.

From here, you want to download the data set by clicking the

Download (144 MB) button next to New Notebook. It should take you to

a sign-in page if you’re not already signed in, but you should be able to

download the data set after that.

Figure 1-1. Kaggle website page on the credit card data

Chapter 1 GettinG Started: data analySiS

https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/mlg-ulb/creditcardfraud

11

Once the zip file finishes downloading, simply extract it somewhere

to reveal the credit card data set. Now let’s open up Jupyter and explore

this data set. Before you start this step, let’s go over the exact packages and

their versions:

• Python 3.6.5

• numpy 1.18.3

• pandas 0.24.2

• matplotlib 3.2.1

To check your package versions, you can run a command like

pip show package_name

Alternatively, you can run the following code to display the version in

the notebook itself:

import module_name

print(module_name.__version__)

In this case, module_name is the name of the package you’re importing,

such as numpy.

 Loading the Data Set
Let’s begin! First, open a new notebook and import all of the dependencies

and set global parameters for this notebook:

%matplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from pylab import rcParams

rcParams['figure.figsize'] = 14, 8

Chapter 1 GettinG Started: data analySiS

12

Refer to Figure 1-2.

Now that you have imported the necessary libraries, you can load the

data set. In this case, the data folder exists in the same directory as the

notebook file and contains the creditcard.csv file. Here is the code:

data_path = "data/creditcard.csv"

df = pd.read_csv(data_path)

Refer to Figure 1-3.

Figure 1-2. Jupyter notebook cell with some import statements
as well as a global parameter definition for the size of all
matplotlib plots

Chapter 1 GettinG Started: data analySiS

13

Now that the data frame has been loaded, let’s take a look at its contents:

df.head()

Refer to Figure 1-4.

Figure 1-3. Defining the data path to the credit card data set .csv file,
reading its contents, and creating a pandas data frame object

Figure 1-4. Calling the head() function on the data frame to display
the first five rows of the data frame

Chapter 1 GettinG Started: data analySiS

14

If you are not familiar with the df.head(n) function, it essentially

prints the first n rows of the data frame. If you did not pass any arguments,

like in the figure above, then the function defaults to a value of five,

printing the first five rows of the data frame.

Feel free to play around with that function as well as use the scroll bar

to explore the rest of the features.

Now, let’s look at some basic statistical values relating to the values in

this data frame:

df.describe()

Refer to Figure 1-5.

Feel free to scroll right and look at the various statistics for the rest of

the columns. As you can see in Figure 1-5, the function generates statistical

summaries for data in each of the columns in the data frame.

The main takeaway here is that there are a huge number of data points.

In fact, you can check the shape of the data frame by simply calling

df.shape

Refer to Figure 1-6.

Figure 1-5. Calling the describe() function on the data frame to get
statistical summaries of the data in each column

Chapter 1 GettinG Started: data analySiS

15

There are 284,807 rows and 31 columns in this data frame. That’s a lot

of entries! Not only that, but if you look at Figure 1-5, you’ll see that the

values can get really large for the column Time. In fact, keep scrolling right,

and you’ll see that values can get very large for the column Amount as well.

Refer to Figure 1-7.

As you can see, there are at least two columns with very large values.

What this tells you is that later on, when building the various data sets for

the model training process, you definitely need to scale down the data.

Otherwise, such large data values can potentially mess up the training

process.

Figure 1-6. Calling the shape() function on the data frame to get an
output in the format (number_of_rows, number_of_columns)

Figure 1-7. Scrolling right in the output of the describe function
reveals that the maximum data value in the column Amount is also
very large, just like the maximum data value in the column Time

Chapter 1 GettinG Started: data analySiS

16

 Normal Data and Fraudulent Data
Since there are only two classes, normal and fraud, let’s split up the data

frame by class and continue with the data analysis. In the context of

anomaly detection, the fraud class is also the anomaly class, hence why

we chose to name the data frame representing fraudulent transaction

data anomalies and interchangeably refer to this class as either fraud or

anomaly.

Here is the code:

anomalies = df[df.Class == 1]

normal = df[df.Class == 0]

After that, run the following in a separate cell:

print(f"Anomalies: {anomalies.shape}")

print(f"Normal: {normal.shape}")

Refer to Figure 1-8.

From here, you can see that the data is overwhelmingly biased towards

normal data, and that anomalies only comprise a vast minority of data

points in the overall data set. What this tells you is that you will have to

craft the training, evaluation, and validation sets more carefully so each of

these sets will have a good representation of anomaly data.

Figure 1-8. Defining data frames for fraudulent/anomalous data
and for normal data and printing their shapes

Chapter 1 GettinG Started: data analySiS

17

In fact, let’s look at this disparity in a graphical manner just to see how

large the difference is:

class_counts = pd.value_counts(df['Class'], sort = True)

class_counts.plot(kind = 'bar', rot=0)

plt.title("Class Distribution")

plt.xticks(range(2), ["Normal", "Anomaly"])

plt.xlabel("Label")

plt.ylabel("Counts")

Refer to Figure 1-9.

The graph visually shows the immense difference between the number

of data values of the two classes.

Figure 1-9. A graph visually demonstrating the difference in counts
for normal data and anomalous data

Chapter 1 GettinG Started: data analySiS

18

So now you can begin analyzing some of the characteristics of data

points in each class. First of all, the columns in this data set are Time,

values V1 through V28, Amount, and Class.

So, do anomalous data values comprise transactions with excessive

amounts? Let’s look at some statistical summary values for Amount:

anomalies.Amount.describe()

Refer to Figure 1-10 for the output.

It seems like the data is skewed right, and that anomalous transactions

comprise values that are not very high. In fact, most of the transactions are less

than $100, so it’s not like fraudulent transactions are high-value transactions.

normal.Amount.describe()

Refer to Figure 1-11 for the output.

Figure 1-10. Output of the describe() function on the data frame for
fradulent values for the column Amount

Figure 1-11. Output of the describe() function on the data frame for
normal values for the column Amount

Chapter 1 GettinG Started: data analySiS

19

If you look at the normal data, it’s even more skewed right than the

anomalies. Most of the transactions are below $100, and some of the

amounts can get very high to values like $25,000.

 Plotting
Let’s now turn to a graphical approach to help visually illustrate this better.

First, you define some functions to help plot the various columns of the

data to make it much easier to visualize the various relationships:

def plot_histogram(df, bins, column, log_scale=False):

 bins = 100

 anomalies = df[df.Class == 1]

 normal = df[df.Class == 0]

 fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)

 fig.suptitle(f'Counts of {column} by Class')

 ax1.hist(anomalies[column], bins = bins, color="red")

 ax1.set_title('Anomaly')

 ax2.hist(normal[column], bins = bins, color="orange")

 ax2.set_title('Normal')

 plt.xlabel(f'{column}')

 plt.ylabel('Count')

 if log_scale:

 plt.yscale('log')

 plt.xlim((np.min(df[column]), np.max(df[column])))

 plt.show()

Chapter 1 GettinG Started: data analySiS

20

def plot_scatter(df, x_col, y_col, sharey = False):

 anomalies = df[df.Class == 1]

 normal = df[df.Class == 0]

 fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True,

sharey=sharey)

 fig.suptitle(f'{y_col} over {x_col} by Class')

 ax1.scatter(anomalies[x_col], anomalies[y_col], color='red')

 ax1.set_title('Anomaly')

 ax2.scatter(normal[x_col], normal[y_col], color='orange')

 ax2.set_title('Normal')

 plt.xlabel(x_col)

 plt.ylabel(y_col)

 plt.show()

Refer to Figure 1-12 to see the code in cells.

Figure 1-12. Each of the plotter functions in their own Jupyter cells

Chapter 1 GettinG Started: data analySiS

21

Now, let’s start by plotting values for Amount by Class for the entire

data frame:

plt.scatter(df.Amount, df.Class)

plt.title("Transaction Amounts by Class")

plt.ylabel("Class")

plt.yticks(range(2), ["Normal", "Anomaly"])

plt.xlabel("Transaction Amounts ($)")

plt.show()

Refer to Figure 1-13.

It seems like there are some massive outliers in the normal data set, as

suspected. However, the graph isn’t very informative in telling you about

Figure 1-13. A scatterplot of data values in the data frame
encompassing all the data values. The plotted columns are Amount
on the x-axis and Class on the y-axis

Chapter 1 GettinG Started: data analySiS

22

value counts, so let’s use the plotting functions defined earlier to draw

graphs that provide more context:

bins = 100

plot_histogram(df, bins, "Amount", log_scale=True)

Refer to Figure 1-14.

From this, you can definitely notice a right skew as well as the massive

outliers present in the normal data. Since you can’t really see much of the

anomalies, let’s create another plot:

plt.hist(anomalies.Amount, bins = bins, color="red")

plt.show()

Figure 1-14. A histogram of counts for data values organized into
intervals in the column Amount in the data frame. The number of
bins is 100, meaning the interval of each bar in the histogram is the
range of the data in the column Amount divided by the number of bins

Chapter 1 GettinG Started: data analySiS

23

Refer to Figure 1-15.

The anomalies seem to be right skewed as well, but much more heavily

so. This means that the majority of anomalous transactions actually have

quite low transaction amounts.

Alright, so what about time? Let’s plot another basic scatterplot:

plt.scatter(df.Time, df.Class)

plt.title("Transactions over Time by Class")

plt.ylabel("Class")

plt.yticks(range(2), ["Normal", "Anomaly"])

plt.xlabel("Time (s)")

plt.show()

Refer to Figure 1-16.

Figure 1-15. A histogram of just the values in the anomaly data
frame for the column Amount. The number of bins is also 100 here, as
it will be for the rest of the examples

Chapter 1 GettinG Started: data analySiS

24

This graph isn’t very informative, but it does tell you that fraudulent

transactions are pretty spread out over the entire timeline. Once again, let’s

use the plotter functions to get an idea of the counts:

plot_scatter(df, "Time", "Amount")

Refer to Figure 1-17.

Figure 1-16. A scatterplot for values in the data frame df with data
in the column Time on the x-axis and data in the column Class in the
y-axis

Chapter 1 GettinG Started: data analySiS

25

You have a better context now, but it doesn’t seem to tell you much.

You can see that fraudulent transactions occur throughout the entire

timeline and that there is no specific period of time when it seems like

higher-value transactions occur. There do seem to be two main clusters,

but this could also be a result of the lack of data points compared to the

normal points.

Let’s now look at the histogram to take into account frequencies:

plot_scatter(df, "Time", "Amount")

Refer to Figure 1-18.

Figure 1-17. Using the plot_scatter() function to plot data values for
the columns Time on the x-axis and Amount on the y-axis in the df
data frame

Chapter 1 GettinG Started: data analySiS

26

From this, you get a really good context of the amount of fraudulent/

anomalous transactions going on over time. For the normal data, it seems

that they occur in waves. For the anomalies, there doesn’t seem to be a

particular peak time; they just occur throughout the entire timespan.

It does appear that that they have defined spikes near the start of

the first transaction, and that some of the spikes do occur where normal

transactions are in the “trough” of the wave pattern shown. However,

a good portion of the fraudulent transactions still occur where normal

transactions are at a maximum.

So what does the data for the other columns look like? Let’s look at

some interesting plots for V1:

plot_histogram(df, bins, "V1")

Refer to Figure 1-19.

Figure 1-18. Using the plot_histogram() function to plot data values
for the column Time in the df data frame

Chapter 1 GettinG Started: data analySiS

27

Here, you can see a clear difference in the distribution of points for

each class over the same V1 values. The range of values that the fraudulent

transactions encompass extend well into the values for V1. Let’s keep

exploring, looking at how the values for Amount relate to V1:

plot_scatter(df, "Amount", "V1", sharey=True)

What the sharey parameter does is it forces both subplots to share

the same y-axis, meaning the plots are displayed on the same scale. You

are specifying this so it will be easier to tell what the distribution of the

anomalous points looks like in comparison to the normal points. Refer to

Figure 1-20.

Figure 1-19. Using the plot_histogram() function to plot the data in
the column V1 in df

Chapter 1 GettinG Started: data analySiS

28

From this graph, the fraudulent points don’t seem out of place

compared to all of the other normal points.

Let’s continue and look at how time relates to the values for V1:

plot_scatter(df, "Time", "V1", sharey=True)

Refer to Figure 1-21.

Figure 1-20. Using the plot_scatter() function to plot the values in the
columns Amount on the x-axis and V1 on the y-axis in df

Chapter 1 GettinG Started: data analySiS

29

Other than a few defined spikes that stand out from where the normal

points would have been, most of the fraudulent data in this context seems

to blend in with the normal data.

Doing this one at a time for all of the other values will be tedious, so

let’s just plot them all at once using a simple script. Here is the code to plot

all of the frequency counts for each column from V1 to V28:

for f in range(1, 29):

 print(f'V{f} Counts')

 plot_histogram(df, bins, f'V{f}')

Refer to Figure 1-22.

Figure 1-21. Using the plot_scatter() function to plot the values in the
columns Time on the x-axis and V1 on the y-axis in df

Chapter 1 GettinG Started: data analySiS

30

Since the output has been minimized, hover where the bar darkens

and click to expand the output so you can see the graphs a lot better. Refer

to Figure 1-23.

Now you should see something like in Figure 1-24.

Figure 1-22. A script to plot histograms using the plot_histogram()
function for data in each column from V1 to V28 in df

Figure 1-23. Hovering over the bar to the left of the plots (it should
darken and show the tooltip as shown) and clicking it to expand the
output

Chapter 1 GettinG Started: data analySiS

31

Scrolling through, you can see a lot of interesting graphs such as

Figure 1-25 and Figure 1-26.

Figure 1-24. What the expanded output should look like. All of the
graphs should display continuously, as depicted in the figure

Chapter 1 GettinG Started: data analySiS

32

In this case, you can see a clear differentiation between the fraudulent

data and the normal data that you didn’t see in the graphs earlier. And

so, features such as V12 are certainly more important in helping give the

model a better context.

Figure 1-25. A histogram of data for the column V12 in df. As you
can see, there is a very clear deviation seen with the anomalous values
compared to the normal values. Both plots share the same x-axis
scale, so while the counts might be very low compared to the normal
values, they are still spread out far more than the normal values for
the same range of V12 column values

Chapter 1 GettinG Started: data analySiS

33

This time you can see an even bigger difference between fraudulent

data and normal data. Once again, it’s features like V12 and V17 that hold

the data that will help the model understand how to differentiate between

the anomalies and the normal points.

To minimize the output, click the same bar as earlier when you

expanded the output. Let’s now look at how all of these data points vary

according to time:

for f in range(1, 29):

 print(f'V{f} vs Time')

 plot_scatter(df, "Time", f'V{f}', sharey=True)

Once again, expand the output and explore the graphs. Refer to

Figure 1-27 and Figure 1-28 to see some interesting results.

Figure 1-26. A histogram of data for the column V17 in df. Just like
with the column V12, there is also a clear deviation seen with the
anomalous values compared to the normal values. This indicates
that the column V17 is more likely to help the model learn how to
differentiate between normal and fraudulent transactions than some
of the other columns that don’t show such a deviance

Chapter 1 GettinG Started: data analySiS

34

Once again, with V12 you can see a significant difference between the

anomalies and the normal data points. A good portion of the anomalies

remain hidden within the normal data points, but a significant amount of

them can be differentiated from the rest.

Figure 1-27. The scatterplot for Time on the x-axis and V12 on the
y-axis shows a deviation between the anomalies and the normal data
points. Although a significant portion of the anomalies fall under the
band of normal points, there are still a good number of anomalies
that fall out of that range. And so you can see that against Time, the
data for the column V12 also shows this deviation from the normal
data points

Chapter 1 GettinG Started: data analySiS

35

The difference between the anomalies and the normal points are

highlighted even further when looking at V17. It seems that even in

relation to time, columns V12 and V17 hold data that best help distinguish

fraudulent transactions from normal transactions. You can see in the

graph that a few normal points are with the anomalous points as well, but

hopefully the model can learn the true difference taking into account all of

the data.

Finally, let’s see the relationship between each of these columns and

Amount:

for f in range(1, 29):

 print(f'Amount vs V{f}')

 plot_scatter(df, f'V{f}', "Amount", sharey=True)

This time there seems to be a few more graphs more clearly showing

the differences between the normal and fraudulent points. Refer to

Figure 1-29, Figure 1-30, and Figure 1-31.

Figure 1-28. The scatterplot for Time on the x-axis and V17 on the
y-axis shows a deviation between the anomalies and the normal data
points. As with the values for V12, you can observe another deviation
between the normal points and the fraudulent points. In this case, the
difference seems to be a bit more pronounced, as the anomalies seem
to be more spread out than in Figure 1-27

Chapter 1 GettinG Started: data analySiS

36

The graphs from V9 through V12 all show a clear differentiation

between the anomalies and the normal points, even if a good portion

of the anomalies are within the cluster of normal points. One thing to

note is that it may not be the same anomalies that differ each time in the

graphs, allowing the model to better learn how to differentiate between the

anomalies and the normal points.

Figure 1-29. Looking at the scatterplot for Amount on the y-axis and
V10 on the x-axis, you can see a pronounced deviation of fraudulent
points from the normal points. For the relationship of the V columns
against Amount, it seems that more columns show an increased
deviation compared to the earlier plots. This difference is not so large,
as you still see that a sizeable portion of the anomalies are within the
normal data cluster. However, this still gives the model some context
in how a fraudulent transaction differs from a normal transaction

Chapter 1 GettinG Started: data analySiS

37

You can once again see that V12 consistently differentiates between

anomalies and normal data. However, there is still the problem of a good

portion of the anomalies staying hidden within the normal data cluster.

Figure 1-30. A scatterplot for the column Amount on the y-axis and
V12 on the x-axis. Once again, you can see a pronounced deviation of
fraudulent points from the normal points. In this case, the majority of
fraudulent points seem to deviate from the normal point cluster. You
can also see that there is a band of normal points far from the main
cluster, and that the band coincides with the anomalous data points.
It is a possible reason to keep in mind if the model classifies points like
these as anomalies

Chapter 1 GettinG Started: data analySiS

38

You can also see that this differentiation between normal points and

fraudulent points holds for V17 looking at transaction amounts.

You could also look at the data for each of the V columns and plot them

against each other, but that’s more useful to help identify precise changes

in trends that will be more useful to know if you want to further train the

model to improve its performance on the new data. First of all, it’s possible

that not every feature is very significant. So, if trends do shift, it does not

necessarily mean that the model’s performance will be downgraded.

Thorough analysis of the data helps data scientists get a much better

understanding of how the various data columns relate to each other and

lets them identify if trends are shifting over time. As data is continuously

collected over time, data biases and trends are bound to shift. So perhaps

a year from now, it’s the column V18 that shows profound differences

between anomalous points and normal points, and V17 now shows that

most anomalous points are contained within the cluster of normal points.

Figure 1-31. A scatterplot for the column Amount on the y-axis and
V17 on the x-axis. Just as with Figure 1-30, you can see a deviation
again of fraudulent points from the normal point cluster. Once again,
the majority of fraudulent points show this deviation, but you can also
see some normal points that coincide with these anomalous points

Chapter 1 GettinG Started: data analySiS

39

 Summary
Data analysis is a crucial step in the process of creating a machine learning

solution. Not only does it determine the type of model and influence the

set of features that will be selected for the training process, but it also helps

identify any changes in trends over time that may signify that the model

needs to be further trained. You explored and analyzed the data in the

credit card data set, generated many plots to get an idea of the relationship

between the two plotted variables, and identified some features that

distinguish between normal points and anomalies. In the next chapter, you

will process the data to create various subsets to help train several types of

machine learning models.

Chapter 1 GettinG Started: data analySiS

41© Sridhar Alla, Suman Kalyan Adari 2021
S. Alla and S. K. Adari, Beginning MLOps with MLFlow,
https://doi.org/10.1007/978-1-4842-6549-9_2

CHAPTER 2

Building Models
In this chapter, we will go over how to build a simple logistic regression

model in both scikit-learn and PySpark. We will also go over the process of

k-fold cross validation to tune a hyperparameter in scikit-learn.

 Introduction
In the previous chapter, you loaded the credit card data set and analyzed

the distribution of its data. You also looked at the relationships between

the features and got a general idea of how heavily they influence the labels.

Now that you’ve gained a better understanding of the data set, you

will proceed with building the models themselves. You will be using the

same credit card data set as in the previous chapter. In this chapter, you

will look at two frameworks: scikit-learn, and PySpark. The models you

build in scikit-learn and in PySpark will stay relevant for the rest of the

book, as you will be using both of them later on when you host them on

cloud services to make predictions. You will keep it simple and construct

logistic regression models in these two frameworks. Since the input data

format is different for these two frameworks, you can’t just conduct the

data processing in advance and use those train/test/validate sets for these

two frameworks. However, it is possible to do so for scikit-learn and Keras,

for example, depending on how the last layer is constructed in the Keras

model.

https://doi.org/10.1007/978-1-4842-6549-9_2#DOI

42

You will be performing the validation step with the scikit-learn model

to tune a hyperparameter. Hyperparameters can be thought of as model-

related parameters that influence the training process and result.

That being said, let’s get started with scikit-learn and build a logistic

regression model. One thing to note is that we will provide a lot of

commentary in the scikit-learn model that we may skip over in the PySpark

example, so be sure to at least read through the process for scikit-learn to

get a general idea of how train-test-validate works.

 Scikit-Learn
Before we get started, here are the packages and their versions that you

will need. We will provide an easy way for you to check the versions of your

packages within the code itself.

Here are the versions of our configuration:

• Python 3.6.5

• numpy 1.18.5

• pandas 1.1.0

• matplotlib 3.2.1

• seaborn 0.10.1

• sklearn 0.22.1.post1

In the code below, you will find that some of the imports are

unnecessary, such as importing all of sklearn when you only use a bit of

its functionality. This is done for the purpose of displaying the version and

such statements have a # beside them.

Chapter 2 Building Models

43

 Data Processing
So now, let’s begin with the import statements:

import numpy as np

import pandas as pd

import matplotlib #

import matplotlib.pyplot as plt

import seaborn as sns

import sklearn #

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import roc_auc_score, plot_roc_curve,

confusion_matrix

from sklearn.model_selection import KFold

print("numpy: {}".format(np.__version__))

print("pandas: {}".format(pd.__version__))

print("matplotlib: {}".format(matplotlib.__version__))

print("seaborn: {}".format(sns.__version__))

print("sklearn: {}".format(sklearn.__version__))

Refer to Figure 2-1 to see the output.

Chapter 2 Building Models

44

Now you can move on to loading the data. You will be using the same

credit card dataset as from the previous chapter:

data_path = "data/creditcard.csv"

df = pd.read_csv(data_path)

Refer to Figure 2-2 to see this code in a cell.

Figure 2-1. The output showing the printed versions of the modules
you will need. Some modules are imported for the sake of printing the
versions and have been marked with a # beside them to indicate that
they are not necessary to run the code

Figure 2-2. Loading the data frame using pandas. The credit card
data set is located in a folder called data, which is located in the same
directory as the notebook file

Chapter 2 Building Models

45

There shouldn’t be any output from loading the data frame. To see the

data frame you just loaded, call the following to ensure it has read the data

correctly:

df.head()

You should see something like in Figure 2-3.

If you remember from the previous chapter, there is a massive

imbalance in the distribution of data between the normal data and the

anomalies. Because of this, you are going to take a slightly alternative

approach in how you craft this data.

This is where data analysis comes into play. Because you know that

a massive disparity between the data counts in each class exists, you will

now take care to specially craft the data sets so that it is ensured that a

good amount of anomalies end up in each data set. If you simply select

100,000 data points from df, split it into your training/test/validate sets

and continue, it is entirely possible that very few or even no anomalies

end up in one or more of those sets. At that point, you would have a lot of

trouble in getting the model to properly learn this task.

This is why you will be splitting up the anomalies and normal points to

create your training/test/validate sets.

With that in mind, let’s create data frames for the normal points and for

the fraudulent points:

Figure 2-3. The output of the head() function. The data has loaded
correctly, and you can see the first five rows of the data frame

Chapter 2 Building Models

46

normal = df[df.Class == 0].sample(frac=0.5, random_state=2020).

reset_index(drop=True)

anomaly = df[df.Class == 1]

You have set the random_state to a specific value so that the results of

the random sampling should be the same no matter how many times you

repeat it, helping with reproducibility. Unfortunately, given the nature of

how models learn, you cannot expect to get the same results every time for

something like neural networks, for example.

In the code, you filter out the respective values by class, and sample

50% of the entire data frame’s normal points to comprise the normal data

in this context.

Refer to Figure 2-4 to see this code in a cell.

You can add some code to check the shapes as well:

print(f"Normal: {normal.shape}")

print(f"Anomaly: {anomaly.shape}")

Refer to Figure 2-5 for the output.

Figure 2-5. Printing the shapes of the normal and anomaly data
frames. There is a clear difference in the number of entries in the two
data frames

Figure 2-4. Filtering the data frame values by class to create the
normal and anomaly data frames. The normal data frame contains
50% of all normal data points, randomly selected as determined by
the seed (random_state)

Chapter 2 Building Models

47

As you can see, there is still a big disparity between the normal points

and the anomalies. In the case of logistic regression, the model is still

able to learn how to distinguish between the two, but in the case of neural

networks, for example, this disparity means the model never really learns

how to classify anomalies. However, as you will see later in this chapter,

you can tell the model to weigh the anomalies far more in its learning

process compared to the normal points.

Now you can start creating the train/test/validate split. However, scikit-

learn provides functionality to create train/test splits only. To get around

that, you will create train and test sets, and then split the train set again

into train and validate sets.

First, you will split the data into train and test data, keeping the normal

points and anomalies separate. To do this, you will use the train_test_

split() function from scikit-learn. Commonly passed parameters are

• x: The x set you want to split up

• y: The y set you want to split up corresponding to

the x set

• test_size: The proportion of data in x and y that you

want to randomly sample for the test set.

And so, to split up x and y into your training and testing sets, you may

see code like the following:

x_train, x_test, y_train, y_test = train_test_split(x, y, test_

size=0.2, random_state = 2020)

Just like earlier, random_state is setting the random seed so that every

time you run it, the data will be split the same way.

Chapter 2 Building Models

48

If you don’t pass in the y parameter, you simply get a split on the x

data. And so, keeping that in mind, let’s split up your normal points and

anomalies into training and testing sets:

normal_train, normal_test = train_test_split(normal, test_size

= 0.2, random_state = 2020)

anomaly_train, anomaly_test = train_test_split(anomaly,

test_size = 0.2, random_state = 2020)

There should be no output but refer to Figure 2-6 to see the code

in a cell.

Now, you can create your training and validation sets by calling the

same function on the respective training sets. You don’t want to split it

by 20% again, though, since the training set is already 80% of the original

data set. If you used a 20% split again, the validation set would be 16% of

the original data, and the training set would be 64% of the original data.

You will instead be doing a 60-20-20 split for the training, testing, and

validation data, respectively, and so you will be using a new test_size

value of 0.25 to ensure these proportions hold (0.25 * 0.8 = 0.2).

With that in mind, let’s create your training and validation splits:

normal_train, normal_validate = train_test_split(normal_train,

test_size = 0.25, random_state = 2020)

anomaly_train, anomaly_validate = train_test_split(anomaly_

train, test_size = 0.25, random_state = 2020)

Refer to Figure 2-7 to see the code in a cell.

Figure 2-6. Splitting the normal and anomaly data frames into train
and test subsets. The respective test sets comprise 20% of the original sets

Chapter 2 Building Models

49

To create your final training, testing, and validation sets, you have to

concatenate the respective normal and anomaly data splits.

First, you define x_train, x_test, and x_validate:

x_train = pd.concat((normal_train, anomaly_train))

x_test = pd.concat((normal_test, anomaly_test))

x_validate = pd.concat((normal_validate, anomaly_validate))

Next, you define y_train, y_test, and y_validate:

y_train = np.array(x_train["Class"])

y_test = np.array(x_test["Class"])

y_validate = np.array(x_validate["Class"])

Finally, you have to drop the column Class in the x sets since it would

defeat the purpose of teaching the model how to learn what makes up a

normal and a fraudulent transaction if you gave it the label directly:

x_train = x_train.drop("Class", axis=1)

x_test = x_test.drop("Class", axis=1)

x_validate = x_validate.drop("Class", axis=1)

To see all this code in a cell, refer to Figure 2-8.

Figure 2-7. You create train and validate splits from the training
data. You have chosen to make the validation set comprise 25% of
the respective original training sets. As these original training sets
themselves comprise of 80% of the original normal and anomaly data
frames, the respective validation splits are 20% (0. 25 * 0.8) of their
original normal and anomaly data frames. And so, the final training
split also becomes 60% of the original, as 0.75 * 0.8 = 0.6

Chapter 2 Building Models

50

Let’s get the shapes of the sets you just created:

print("Training sets:\nx_train: {} y_train: {}".format(x_train.
shape, y_train.shape))
print("\nTesting sets:\nx_test: {} y_test: {}".format(x_test.
shape, y_test.shape))
print("\nValidation sets:\nx_validate: {} y_validate:
{}".format(x_validate.shape, y_validate.shape))

Refer to Figure 2-9 to see the output.

Looking at the data analysis, you can see that some of the values get

really large. The fine details are beyond the scope of this book, but when

some features have a relatively small range but others have an extremely

large range (think of the range of V1 and Time from the previous chapter),

the model will have a much harder time learning.

Figure 2-8. Creating the respective x and y splits of the training,
testing, and validation sets. The x sets are the combinations of the
normal and anomaly sets for each split (train, test, validate), while
the y sets are simply the data in the Class columns of those x sets. You
then drop the label column from the x sets

Figure 2-9. Printing the output of the different sets. The three sets
should comprise 60%, 20%, and 20% of the original union of the
normal and anomaly sets

Chapter 2 Building Models

51

In more detail, the model will have a hard time optimizing the cost

function and may take many more steps to converge, if it is able to do so at all.

And so it is better to scale everything down by normalizing the data.

You will be using scikit-learn’s StandardScaler, which normalizes all of

the data such that the mean is 0 and the standard deviation is 1.

Here is the code to standardize your data:

scaler = StandardScaler()
scaler.fit(pd.concat((normal, anomaly)).drop("Class", axis=1))

x_train = scaler.transform(x_train)
x_test = scaler.transform(x_test)
x_validate = scaler.transform(x_validate)

It is important to note that you are fitting the scaler on the entire data

frame so that it standardizes all of your data in the same way. This is to

ensure the best results since you don’t want to standardize x_train, x_test,

and x_validate in their own ways since it would create discrepancies in

the data and would be problematic for the model. Of course, once you’ve

deployed the model and start receiving new data, you would still standardize

it using the scaler from the training process, but this new data could possibly

come from a slightly different distribution than your training data. This

would especially be the case if trends start shifting - this new standardized

data could possibly lead to a tougher time for the model since it wouldn’t fit

very well in the distribution that the model trained on.

Refer to Figure 2-10 to see the code in a cell.

Figure 2-10. Fitting a standard scaler object on a concatenation of
the normal and anomaly data frames. This is done so that each of
the train, test, and validate subsets will be scaled according to the
same standards, ensuring that there are no discrepancies between the
scaling of the data

Chapter 2 Building Models

52

 Model Training
Finally, you can now define your logistic regression model:

sk_model = LogisticRegression(random_state=None, max_iter=400,

solver='newton-cg').fit(x_train, y_train)

Refer to Figure 2-11 to see the code in a cell. There should not be any

outputs after execution if it all goes well. Any errors you might see could

involve a failure to converge. For that, changing the max_iter parameter

could help, and changing the solver algorithm could help as well.

After the training process, either the evaluation step or validation

step can come next. As long as the testing set and the validation set come

from different distributions (the validation set is derived from the training

set, while the testing set is derived from the original data), the model is

technically seeing new data in the evaluation and in the validation processes.

The context also matters. If you are using the validation process to

select the best model out of a set of trained models, then the validation

process can come after the training process. You can still evaluate one or

all of your trained models, but it could be unnecessary because in this

context you’re trying to find the best model for the code.

In the context where you’re trying to tune your hyperparameters for

a model you are going to stick with, it doesn’t matter whether you do the

evaluation first or the validation first. Doing the evaluation first, as you will

be doing shortly, can give you a good idea of how well the model is doing

currently before starting the validation step. The model will never learn

from the evaluation data, so there’s no harm in evaluating the model on

this data.

Figure 2-11. Defining the logistic regression model and training it on
the training data

Chapter 2 Building Models

53

In this example, you are looking at tuning the hyperparameter for class

weights (how much to weight a normal sample and how much to weight a

fraudulent sample).

But first, let’s evaluate your model to get a deeper understanding of

how everything works.

 Model Evaluation
You can now look at accuracy and AUC scores. First, you find the accuracy

using the built-in score function of the model:

eval_acc = sk_model.score(x_test, y_test)

Next, let’s get the list of predictions from the model to help calculate

the AUC score. AUC is usually a better metric since it better explains

the performance of the model. The general gist of it is that a model that

perfectly classifies every point correctly will have an AUC score of 100%.

The problem with accuracy in this context is that if there are 100,000

normal points and perhaps around 100 anomalies, the model can classify

all of the normal points correctly and none of the anomalies and still get

a really high accuracy above 99%. However, the AUC score would show

a value much lower at around 0.5. An AUC of 0.5 means that the model

knows nothing and is practically just guessing randomly, but in this case, it

means the model only ever predicts “normal” for any point it sees. In other

words, it hasn’t actually learned much of anything if it doesn’t know how

to predict an anomaly.

It’s also worth mentioning that AUC isn’t the sole metric by which one

should base the worthiness of a model, since context matters. In this case,

normal points far outnumber anomalies, so accuracy is a relatively poor

metric to solely judge model performance on. AUC scores in this case

would reflect the mode’s performance well, but it’s also possible to get

higher AUC scores but lower accuracy scores. That just means you must

Chapter 2 Building Models

54

look at the results carefully to understand exactly what’s happening. To

help with this, you will look at a “confusion matrix” shortly.

Now, let’s get the predictions and calculate the AUC score:

preds = sk_model.predict(x_test)

auc_score = roc_auc_score(y_test, preds)

Finally, let’s print out the scores:

print(f"Auc Score: {auc_score:.3%}")

print(f"Eval Accuracy: {eval_acc:.3%}")

Refer to Figure 2-12 to see all three of the cells above and the output

that results.

In this case, both the AUC score and the accuracy score are high.

Between the two, the accuracy score is definitely inflated by the number of

normal points that exist, but the AUC score indicates that the model does

a pretty good job at distinguishing between the anomalies and the normal

points.

Scikit-learn actually provides a function that lets you see the ROC

curve—the figure from which the AUC score (or “area under curve”) is

derived from. Run the following:

roc_plot = plot_roc_curve(sk_model, x_test, y_test,

name='Scikit-learn ROC Curve')

Refer to Figure 2-13 for the output.

Figure 2-12. Printing out the AUC score and the accuracy for the
scikit-learn logistic regression model

Chapter 2 Building Models

55

What’s basically happening is that scikit-learn takes in the model and

the evaluation set to dynamically generate the curve as it predicts on the

test sets. The metrics you see on the axes are derived from how correctly

the model predicts each of the values. The “true positive rate” and the

“false positive rate” are derived from the values on the confusion matrix

that you will see below.

From that graph, the AUC score is generated. You can see that it differs

from the score that was calculated earlier, but this can be attributed to the

two functions calculating the scores slightly differently.

Let’s now build the confusion matrix and plot it using seaborn:

conf_matrix = confusion_matrix(y_test, preds)

ax = sns.heatmap(conf_matrix, annot=True,fmt='g')

ax.invert_xaxis()

ax.invert_yaxis()

plt.ylabel('Actual')

plt.xlabel('Predicted')

Refer to Figure 2-14 for the output.

Figure 2-13. The ROC curve generated for the logistic regression
model you just trained. An ROC curve starting with a true positive
value of 1.0 at a false positive value of 0.0 is the best possible curve in
theory. From that point, it should keep going right while maintaining
its value as it hits 1.0 on the x-axis. This graph is quite close to that
ideal, hence why the AUC score is so high at 0.98. The discrepancy in
AUC score here compared to when you calculated it earlier has to do
with how the value is actually calculated

Chapter 2 Building Models

56

This is what a confusion matrix looks like. The y-axis consists of

the true labels, while the x-axis consists of predicted labels. When the

true label is “0” and the model predicts “0,” we call this a true negative.

“True” refers to the true label, and “negative” refers to the label the model

predicts.

What counts as “positive” and what counts as “negative” can differ. In

tasks such as disease detection, if a test finds someone to have the disease,

they are said to “test positive.” Otherwise, they “test negative.” Anomaly

detection is similar. When a model thinks that a point is an anomaly, it

flags it with the label “1.” And so, a point is labeled “positive” if the model

thinks it is an anomaly, and “negative” if it doesn’t.

Figure 2-14. The confusion matrix plot of the results of training. The
accuracy for the normal points is very good, but the accuracy for the
anomaly points is ok. There is still further room for improvement
looking at these results, as you have not tuned the hyperparameters of
the model yet, but it already does ok in detecting anomalies. The goal
now is to keep the accuracy for the normal points as high as possible,
or at a high enough level that’s acceptable, while raising the accuracy
for the anomaly points as high as possible. Based on this confusion
matrix plot, you can now see that the lower AUC score is more
accurate at reflecting the true performance of the model. You can see
that a non-negligible amount of anomalies were falsely classified as
normal, hence an AUC score of 0.84 is a much better indicator of the
model’s performance than the graph’s apparent score of 0.98

Chapter 2 Building Models

57

You may notice that we have inverted the axes in the code. This is

simply to get it in the format so that the top left of the matrix corresponds

to “true positives,” the top right of the matrix corresponds to “false

negatives,” the bottom left of the matrix corresponds to “false positives,”

and the bottom right of the matrix corresponds to “true negatives.”

To quickly recap these concepts:

• True positives are values that the model predicts as

positive that actually are positive.

• False negatives are values that the model predicts as

negative that actually are positive.

• False positives are values that the model predicts as

positive that actually are negative.

• True negatives are values that the model predicts as

negative that actually are negative.

To look at how well the model identifies anomalies, look at the 1

row on the y-axis. The sum of this row should equal the total number

of anomalies in the test set: 99 anomalies. The model predicted about

68.7% of the anomalies correctly (68/(68+31)) and predicted 99.98% of the

normal points correctly (28425/(28425 + 7)) looking at the bottom row.

As you can see, the confusion matrix gives us a really good look at

the true performance of the model. You now know that it does very well

in the task of predicting normal points but does an ok job at predicting

anomalies. That being said, the model can still predict a majority of

anomalies correctly. And so you can see that the AUC score of 0.84 was

much more accurate at indicating the performance of the model than the

graph, which had an AUC of 0.98. With an AUC of 0.98, you can expect that

there are very, very few instances of false negatives or false positives.

Chapter 2 Building Models

58

 Model Validation
Let’s now look at how to use the process of k-fold cross-validation to

compare several hyperparameter values. After the validation process has

ended, you will compare the evaluation metrics to get a better idea of what

hyperparameter setting works best.

The hyperparameter you want to tune is how much you want to weight

the anomalies by compared to the normal data points. By default, both of

them are weighted equally. Let’s define a list of weights to iterate over:

anomaly_weights = [1, 5, 10, 15]

Next, you define the number of folds and initialize your data fold

generator:

num_folds = 5

kfold = KFold(n_splits=num_folds, shuffle=True,

random_state=2020)

What this KFold() function does is that it splits the data passed in into

num_folds different partitions. A single fold acts as a validation set at a

time, while the rest of the folds are used for training. In this context, the

“validation fold” is basically what the model will be evaluating on. It is

called “validation” since it helps us get an idea of how the model is doing

on data it has never seen before.

If you have built deep learning models before, you may know that

during the training process, you can split a small portion of the training

set aside as a validation set. This lets you know during training if you’re

overfitting or not, as decreasing training loss and increasing validation loss

would indicate.

Refer to Figure 2-15 to see the code above in cells.

Chapter 2 Building Models

59

Now you define the validation script:

logs = []

for f in range(len(anomaly_weights)):

 fold = 1

 accuracies = []

 auc_scores= []

 for train, test in kfold.split(x_validate, y_validate):

 weight = anomaly_weights[f]

 class_weights= {

 0:1,

 1: weight

 }

 sk_model = LogisticRegression(random_state=None,

 max_iter=400,

 solver='newton-cg',

 class_weight=class_

weights).fit(x_

validate[train],

y_validate[train])

Figure 2-15. Setting the different values for anomaly weights to test
with the validation script and constructing the KFold data generator.
In this case, you are using five folds, so the data passed in will be split
five ways

Chapter 2 Building Models

60

 for h in range(40): print('-', end="")

 print(f"\nfold {fold}\nAnomaly Weight: {weight}")

 eval_acc = sk_model.score(x_validate[test],

y_validate[test])

 preds = sk_model.predict(x_validate[test])

 try:

 auc_score = roc_auc_score(y_validate[test], preds)

 except:

 auc_score = -1

 print("AUC: {}\neval_acc: {}".format(auc_score, eval_acc))

 accuracies.append(eval_acc)

 auc_scores.append(auc_score)

 log = [sk_model, x_validate[test], y_validate[test], preds]

 logs.append(log)

 fold = fold + 1

 print("\nAverages: ")

 print("Accuracy: ", np.mean(accuracies))

 print("AUC: ", np.mean(auc_scores))

 print("Best: ")

 print("Accuracy: ", np.max(accuracies))

 print("AUC: ", np.max(auc_scores))

That’s a lot to take in at once, so be sure to refer to Figure 2-16 to make

sure your code is formatted correctly.

Chapter 2 Building Models

61

Before you run the script, let’s go over what the code does, as that was a

lot of code thrown out at once.

The first loop goes over each of the anomaly weights. You set the fold

number here equal to 1 and define empty lists to hold values for accuracy

and AUC scores for each run with the current weight parameter.

The second loop goes over the five fold boundaries that the KFold()

object defines. You set the class_weights dictionary and pass it into the

model as a hyperparameter. After the training process, you evaluate as

usual. There is a try-except block for the AUC score in the event that the

Figure 2-16. The validation script in a cell. The script is quite long, so
be sure it is formatted correctly because a single space misalignment
can cause issues

Chapter 2 Building Models

62

fold generated only has values of one class (so really if it only has normal

data and no anomalies). If the AUC score is -1 for any fold, then you know

there was a problem with one of the folds.

You do save the model, the validation data, and the predictions so that

you can examine the confusion matrix and plot the ROC curve for any run

you like. After the end of the five folds, the script then displays averages

and the best scores.

The output will be truncated when you run this, so don’t forget to

expand it like in the previous chapter to look at all of the runs. Feel free to

explore the output or even change the number of folds but beware of the

results because increasing the number of folds can mean that the number

of anomalies must be spread across even more partitions. In this specific

context, a lower number of folds is likely to be better because you have so

few anomaly points.

When you sift through the output, you can see that the best results

occur when the anomaly weight is set to 10. This setting had the highest

average AUC score and had the best AUC score as well, resulting in an

output like what you see in Figure 2-17.

Chapter 2 Building Models

63

Figure 2-17. Looking at the results of the best setup in the validation
script output. The best setup turned out to be one where the anomalies
were weighted as 10, as it had the best average AUC score and the best
AUC score with the other anomaly weight parameters. The true best
weight is likely around an anomaly weight of 10, though you must
perform another hyperparemter search with a more narrowed range
to find the absolute best setting. You can keep narrowing the search as
much as you’d like, but past a certain precision, you will find that you
are getting diminishing returns

Chapter 2 Building Models

64

Let’s examine the plots for this setup since it was the best performer of

all of them on average.

First, you load the correct log in the list of logs. Since the anomaly

weight was 10, and the second fold performed the best, you want to look at

the twelfth index in the entries in logs. (The first five correspond to indices

0-4, and the next five are indices 5-9. With index 10, you begin the first fold

with weight ten, so the second fold is at index 11.)

sk_model, x_val, y_val, preds = logs[11]

Let’s look at the ROC curve. Keep in mind that since there is so little

data in the validation set, the AUC score may not be so accurate. Here is

the code:

roc_plot = plot_roc_curve(sk_model, x_val, y_val, name='Scikit-

learn ROC Curve')

Refer to Figure 2-18 to see the output of the above two cells.

Figure 2-18. Viewing the ROC curve for a specific validation fold.
As you can see, the ROC curve is quite optimal. A perfect ROC curve
would start as close as possible to 1.0 on the y-axis while maintaining
that level right as it reaches 1.0 on the x-axis. An ROC graph like that
would mean the AUC would be as close to 1.0 as possible. In this case,
you almost see the perfect AUC curve, and the AUC is stated to be 1.0.
The confusion matrix in Figure 2-19 will reveal a lot more about why
the AUC score is so low

Chapter 2 Building Models

65

This graph looks different compared to the ROC plot you saw earlier. In

fact, it almost seems perfect.

Let’s look at the confusion matrix to get a better idea of how the model

performed on this fold:

conf_matrix = confusion_matrix(y_val, preds)

ax = sns.heatmap(conf_matrix, annot=True,fmt='g')

ax.invert_xaxis()

ax.invert_yaxis()

plt.ylabel('Actual')

plt.xlabel('Predicted')

The resulting confusion matrix can be seen in Figure 2-19.

Figure 2-19. The confusion matrix for a specific validation fold. It
has very good accuracy in labeling normal data points and does very
well with anomaly points. Additionally, you can see that there are
barely any anomalies in this validation fold if you count the entries
in the top row: 21 anomalies to 5,685 normal points. It is no wonder,
then, that having a higher weight on the anomaly helped the model
factor in these anomalies in its learning process, resulting in better
performance in anomaly detection

Chapter 2 Building Models

66

The model did quite well on correctly classifying the anomalies, but

the goal of validation in this case is just to help nudge the hyperparameter

setting in the right direction. Based on the results of the validation process,

you know that the optimal hyperparameter value lies within the values of

10 and 15 because those two settings produced the best results.

Of course, you can narrow the range further to include values between

10 and 15 for the anomaly weights and repeat this process again and again,

further reducing the range until a good, optimal value is found. After a

certain precision, however, you will find that you are getting diminishing

returns, and that the effort you put into hyperparameter tuning only

produces near-negligible boosts in performance.

With that, you now know how to train, evaluate, and validate a logistic

regression model in scikit-learn.

 PySpark
We have provided the versions of the modules we will be using. Installing

PySpark can be a little complicated as it’s not a matter of doing pip

install PySpark depending on the version, so beware of that.

Here are the versions of our configuration:

• Python 3.6.5

• PySpark 3.0.0

• matplotlib 3.2.1

• seaborn 0.10.1

• sklearn 0.22.1.post1

With that, let’s begin. Again, we will not provide commentary as

detailed as in the scikit-learn example, so be sure to review the whole

process in scikit-learn to get a good idea of how it will go. Additionally, we

won’t be validating the model in PySpark in this example.

Chapter 2 Building Models

67

 Data Processing
Here are the import statements:

import pyspark #

from pyspark.sql import SparkSession

from pyspark import SparkConf, SparkContext

from pyspark.sql.types import *

from pyspark.ml.feature import VectorAssembler

from pyspark.ml import Pipeline

from pyspark.ml.classification import LogisticRegression as

LogisticRegressionPySpark

import pyspark.sql.functions as F

import os

import seaborn as sns

import sklearn #

from sklearn.metrics import confusion_matrix

from sklearn.metrics import roc_auc_score

import matplotlib #

import matplotlib.pyplot as plt

os.environ["SPARK_LOCAL_IP"]='127.0.0.1'

spark = SparkSession.builder.master("local[*]").getOrCreate()

spark.sparkContext._conf.getAll()

print("pyspark: {}".format(pyspark.__version__))

print("matplotlib: {}".format(matplotlib.__version__))

print("seaborn: {}".format(sns.__version__))

print("sklearn: {}".format(sklearn.__version__))

The output should look something like in Figure 2-20.

Chapter 2 Building Models

68

You will notice that there is some additional code relating to PySpark

that you have had to define. With PySpark, you must define a Spark context

and create a Spark session. What this really means is that you are creating

a point of connection to the Spark engine, enabling the engine to run all of

the code relating to Spark functionality.

Let’s now load the data set. PySpark has its own functionality for

creating data frames, so you won’t be using pandas. Execute the following:

data_path = 'data/creditcard.csv'

df = spark.read.csv(data_path, header = True, inferSchema = True)

labelColumn = "Class"

columns = df.columns

numericCols = columns

numericCols.remove(labelColumn)

print(numericCols)

Figure 2-20. Importing the necessary modules and printing their
versions. Once again, modules imported solely for the purpose of
displaying versions are marked with a # so you may remove them and
the print statements if desired

Chapter 2 Building Models

69

You should see something like Figure 2-21.

Printing the columns is just to ensure that the label column has been

removed successfully.

You can look at the data frame now just to ensure that it has been

loaded properly. You will have to use built-in functionality to convert to a

pandas data frame, because Spark data frames are not very clean to look at.

Look at the following two cells and their outputs:

df.show(2)

Refer to Figure 2-22.

Figure 2-21. Reading the credit card data set in PySpark and
removing the Class column from the list of columns. This is done
because you don’t want the Class column to be included in the feature
vector, as you will see in Figure 2-22

Chapter 2 Building Models

70

Now compare this to the following:

df.toPandas().head()

Refer to Figure 2-23.

Figure 2-22. The output of the Spark data frame. Since there are so
many columns in the data frame, the output is very messy and very
difficult to read. Fortunately, there is built-in functionality to convert
PySpark data frames into pandas data frames, making it much easier
to view the rows in the Spark data frame

Chapter 2 Building Models

71

So whenever you want to check a Spark data frame, make sure to

convert it to pandas if it has a lot of columns.

The data processing procedure for PySpark is slightly different than

in pandas. To train the model, you must pass in a vector called features.

Take a look at the following code:

stages = []

assemblerInputs = numericCols

assembler = VectorAssembler(inputCols=assemblerInputs,

outputCol="features")

stages += [assembler]

dfFeatures = df.select(F.col(labelColumn).alias('label'),

*numericCols)

This defines the inputs to the assembler so that it knows what columns

to transform into the features vector.

From here, let’s add to the cell above and create the normal and

anomaly data splits as with the scikit-learn example.

normal = dfFeatures.filter("Class == 0").

sample(withReplacement=False, fraction=0.5, seed=2020)

anomaly = dfFeatures.filter("Class == 1")

Figure 2-23. Using PySpark’s built-in functionality to convert the
spark data frame into a pandas data frame for easier viewing. As seen
in Figure 2-22, it is extremely hard to read the direct output of a Spark
data frame

Chapter 2 Building Models

72

normal_train, normal_test = normal.randomSplit([0.8, 0.2],

seed = 2020)

anomaly_train, anomaly_test = anomaly.randomSplit([0.8, 0.2],

seed = 2020)

The cell should look like Figure 2-24.

Just like in the scikit-learn example, you combine the respective

normal and anomaly splits to form your training and testing sets. This

time, however, you won’t have a validation set, so you are looking at an

80- 20 split between the training and testing data.

train = normal_train.union(anomaly_train)

test = normal_test.union(anomaly_test)

Refer to Figure 2-25 to see the cell.

Figure 2-24. Constructing the VectorAssembler that will be used later
to create a feature vector from the input data. You also create a normal
and anomaly data split similar to how it was done in scikit-learn, and
split it in a similar fashion into training and testing subsets

Figure 2-25. Creating the training and testing sets in a similar
manner to how you did it in scikit-learn, but with PySpark’s
functionality

Chapter 2 Building Models

73

Let’s finish the rest of the pipeline and create the feature vector:

pipeline = Pipeline(stages = stages)

pipelineModel = pipeline.fit(dfFeatures)

train = pipelineModel.transform(train)

test = pipelineModel.transform(test)

selectedCols = ['label', 'features'] + numericCols

train = train.select(selectedCols)

test = test.select(selectedCols)

print("Training Dataset Count: ", train.count())

print("Test Dataset Count: ", test.count())

Refer to Figure 2-26 to see the output.

 Model Training
You can now define and train the model:

lr = LogisticRegressionPySpark(featuresCol = 'features',

labelCol = 'label', maxIter=10)

lrModel = lr.fit(train)

trainingSummary = lrModel.summary

pyspark_auc_score = trainingSummary.areaUnderROC

Figure 2-26. Using a pipeline to create a feature vector from the data
frame. This feature vector is what the logistic regression model will
train on

Chapter 2 Building Models

74

Refer to Figure 2-27 to see the above code in a cell.

 Model Evaluation
Once the model has finished training, run the evaluation code:

predictions = lrModel.transform(test)

y_true = predictions.select(['label']).collect()

y_pred = predictions.select(['prediction']).collect()

evaluations = lrModel.evaluate(test)

accuracy = evaluations.accuracy

Add the following code as well to display the metrics:

print(f"AUC Score: {roc_auc_score(y_pred, y_true):.3%}")

print(f"PySpark AUC Score: {pyspark_auc_score:.3%}")

print(f"Accuracy Score: {accuracy:.3%}")

Refer to Figure 2-28 to see the output.

Figure 2-27. Defining the PySpark logistic regression model, training
it, and finding the AUC score using the built-in function of the model

Figure 2-28. The output metrics. The AUC score is calculated using
scikit-learn’s scoring algorithm, while the PySpark AUC score metric
comes from the training summary of the PySpark model. Finally, the
accuracy score is also outputted

Chapter 2 Building Models

75

You can see that the AUC score and the accuracy are quite high, so let’s

examine the graphs.

First, let’s look at the ROC curve:

pyspark_roc = trainingSummary.roc.toPandas()

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('PySpark ROC Curve')

plt.plot(pyspark_roc['FPR'],pyspark_roc['TPR'])

To see the graph, refer to Figure 2-29.

Figure 2-29. The ROC curve for the PySpark logistic regression model
you just trained. A perfect ROC curve would have the true positive
rate starting at 1.0, where it continues right to a false positive rate
value of 1.0. This curve is quite close to that, hence why its area (AUC)
is said to be around 0.97997 by PySpark, keeping in mind a perfect
AUC score is 1.00

Chapter 2 Building Models

76

The curve looks quite optimal. Let’s now look at the confusion matrix

to get a detailed idea of how the model performs:

conf_matrix = confusion_matrix(y_true, y_pred)

ax = sns.heatmap(conf_matrix, annot=True,fmt='g')

ax.invert_xaxis()

ax.invert_yaxis()

plt.ylabel('Actual')

plt.xlabel('Predicted')

Refer to Figure 2-30 to view the confusion matrix plot.

Figure 2-30. The plotted confusion matrix of the PySpark logistic
regression model you just trained. The accuracy of correctly labeled
points for the normal data is very high and is decent for the
anomalous data

Chapter 2 Building Models

77

From this, you have a much more detailed account of how the model

performed. Looking at just the anomalies, you see that the model has

a 81.4% accuracy (70/(70+16)) in predicting anomalies. This is better

than the model you trained in scikit-learn, though you haven’t tuned the

hyperparameter to attain maximum performance.

PySpark does have an option to weight your data, but this is done on

a sample-by-sample basis. What this means is that instead of passing in a

weight dictionary for each class, you have to create a column in the data

frame with each anomaly being weighted a certain amount and each

normal point being weighted as 1, for example. By default, everything

is weighted as 1, so that means the PySpark model may have a greater

potential in performance than the scikit-learn model.

Moving on to the normal points, you see a really good accuracy of

99.96% (28363/(28363+10)), so it is able to identify normal points very well.

 Summary
With the insights you gained from data analysis, you processed the data

into training, testing, and validation sets in scikit-learn and PySpark

(you only did a train-test split in PySpark, but you could have split the

training data into training and validation sets just like in scikit-learn).

From there, you constructed logistic regression models in each framework

and trained and evaluated on them. You looked at accuracy and AUC

scores as metrics and looked at the ROC curve and confusion matrix to

get a better idea of how the model performed. For the scikit-learn model,

you performed k-fold cross-validation to help tune the hyperparameter.

In the next chapter, you will keep your experiences with data analysis

and model creation in mind as you learn about MLOps and how you can

operationalize your models.

Chapter 2 Building Models

79© Sridhar Alla, Suman Kalyan Adari 2021
S. Alla and S. K. Adari, Beginning MLOps with MLFlow,
https://doi.org/10.1007/978-1-4842-6549-9_3

CHAPTER 3

What Is MLOps?
In this chapter, we will cover the concepts behind the term “MLOps” and

go over what it is, why it’s useful, and how it’s implemented.

 Introduction
Creating machine learning solutions to various problems can be quite

the arduous task. Let’s imagine ourselves in the shoes of a team that is

attempting to solve a problem with machine learning. You may be familiar

with this process if you read Chapter 1, but we will recap the entire process

once again to establish the context. You may skip past this section if you

are already familiar with this. The entire process may look somewhat like

the following:

• Collect and process raw data: Raw data is rarely in

a format that is easy to train a model on. Usually, it

requires processing to remove aberrant data points

such as null values and faulty data values. Other

times, you might have to process the raw data to

extract only the information you need among all of

the noise.

https://doi.org/10.1007/978-1-4842-6549-9_3#DOI

80

• Analyze the data: This step involves looking at the

data points and understanding their characteristics.

How is it structured? What does the distribution of the

data points look like? Are there any identifiable trends

or biases in the data? This step is crucial because it

dictates how you are going to approach the problem.

If you already have a trained model you are looking

to update, it also tells you if there are any new trends

in the data that your model should be updated to

consider. If you identified any “useless features” that

don’t really influence the output, you might drop them

and train a new model to improve training speed while

possibly boosting performance.

• Process the data for training: In this step, you could

be scaling the data to a more appropriate range and

perhaps removing any outliers and/or anomalies that

could interfere with model performance. Furthermore,

you could also be applying feature engineering to

create new features from existing data points and

perhaps give your model more or a better context

during training. This is also where you create training

and testing data sets, though optimal practice is to

make training, testing, and validation data sets.

• Construct, train, and test the model: In this step, you

are creating the model, setting hyperparameters, and

training the model. In the case of deep learning, you

can also select a subsection of the training set to be a

data validation set. The purpose of this set is to have

the model be evaluated on it at the end of every epoch

or full forward pass of the data through the model. By

comparing the model performance on data it’s seen

Chapter 3 What Is MLOps?

81

many times over during training versus data it hasn’t

seen at all (or rather, data that has no effect on weight

adjustment), you can see if the model is truly learning

to generalize or if it’s just overfitting.

• Overfitting is when a model performs significantly

better on a training set compared to data that it has

never seen before. As just discussed, one way to

give an early indication of overfitting is to set aside a

portion of the training set as validation data during the

training phase. This can give you an early indication

of overfitting without having to find out after the

training process has finished, which can take anywhere

from minutes to days depending on the depth of the

model and the equipment used. And so, it follows that

overfitting can also be observed when the model is

evaluated on the testing data or validation data, and

discrepancies in model performance can be observed

between these sets and the training set.

• This phenomenon of overfitting could partially result

from the model not receiving enough data points

during training to reflect the variety it is expected to

see, so fixing the training set by introducing more

variety or even increasing the number of data points

can help. Additionally, including methods such as

regularization or dropout into the model’s architecture

can also help combat overfitting in the case of deep

learning models.

Chapter 3 What Is MLOps?

82

• An important thing to discuss is the purpose of the

testing and validation sets. Testing sets are reserved

for evaluating a model’s performance on data it’s never

seen before.

• Validation sets are reserved for helping select models,

select model architecture, tune hyperparameters, or

simply to give an indication of model performance on

data it’s never seen during the training process.

• An example of validation is k-fold cross-validation,

where it generates k random partitions of test-train

data from validation data and can be used to train/

evaluate the model on all of them to give an idea

of the best performance it can attain with various

hyperparameter settings. Of course, we can also use

k-fold cross validation to perform the other functions

that validation helps with. You looked at an example

using this method of validation in Chapter 2, when you

used it to help tune the weighting of anomalies.

• Coupling this technique with a script that has a set of

hyperparameters can result in an optimal model with

proper hyperparameters. From there, the model can

be retrained and evaluated again on the test set to get a

final performance benchmark.

• The specific order this is done in can differ, though.

For example, trained models can also be evaluated

first and then validated, compared to the other way

around. This is because the training process is likely to

be repeated with altered hyperparameters anyway after

the evaluation stage reflects some form of performance

Chapter 3 What Is MLOps?

83

discrepancy or if validation data during the training

process reveals that possible overfitting is occurring.

Either way, it really depends, but good practice is to at

least incorporate both testing and validation data to

best tune the model.

• Validate and tune the model: As previously

discussed, the validation set can be another “testing”

set that the model has never seen before, and can

be used in any of the several ways described earlier

and in Chapter 1. Once your model has reached an

acceptable level of performance on the validation set

and is retrained and evaluated again, you can look at

deploying the model.

• Deploy and monitor the model: In this step, the

model has finally left the hands of the machine

learning/data science team. It is now the job of

engineering and operational teams to integrate this

model into the application and put it into service.

Operational teams are in charge of constantly

monitoring the performance of the model, with dips

in performance possibly indicating that this entire

process may need to be repeated to update the model

to understand new trends. Operational teams are also

responsible for reporting any bugs and unexpected

model predictions to the data science team, feedback

that also contributes to the start of this whole cycle as

the model needs to be fixed.

Chapter 3 What Is MLOps?

84

Hopefully, it’s clear just how work-intensive the entire process can

get, especially since it will most likely need to be repeated multiple times.

While it is possibly easier the second time around since you’re only

updating the model on new data patterns and trends, it is still a problem

that can take up hours of manual labor that can be better spent elsewhere.

After all, maintenance of applications in the software development

process is usually where most of the money and resources go, not the

initial construction and release of the application. The same can apply

to machine learning models, worsening the overall maintenance costs

because the costs for deployed machine learning models are added on top

of the costs for the software application utilizing the services of the models.

Imagine if you could simply automate this entire process away,

allowing you to take full advantage of high-performance machine

learning models without all of that hassle. This is where MLOps comes in,

something that can be thought of as the intersection between machine

learning and DevOps practices. DevOps, or developmental operations,

refers to a set of practices that combines the work processes of software

developers with those of operational teams to create a common set

of practices that functions as a hybrid of the two roles. As a result, the

developmental cycle of software is expedited, and continuous delivery

of software products is ensured. Total costs also go down because

maintenance costs are reduced as a result of the increase in efficiency of

the workflow in maintaining the software applications. Refer to Figure 3-1

to see a graph representing the DevOps workflow.

Chapter 3 What Is MLOps?

85

Figure 3-1. A graph depicting the workflow in a DevOps
environment. Software development teams typically adopt the Agile
methodology of software development, which is summarized above
through the planning, building, and testing stages. Operational teams
are in charge of deploying, maintaining, and collecting feedback in
the form of bugs and user feedback and relaying this information to
the development teams. From there, the development team enters the
maintenance phase of the application, where they plan, build, test,
and push the next patch/update for the application. Furthermore,
automating the process of testing and deploying allows for continuous
integration and delivery of software products, something we will
expand upon later in this chapter

Chapter 3 What Is MLOps?

86

Similarly, MLOps adopts DevOps principles and applies them to

machine learning models in place of software, uniting the developmental

cycles followed by data scientists and machine learning engineers

with that of operational teams to help ensure continuous delivery of

high-performance machine learning models. The process of model

development in what’s called the experimental stage, something we will

look at in detail later in the chapter, can lead to impressive performances

and can seem like very promising solutions. However, the reality is more

that most models simply never make it past this experimental stage,

since deploying them is a massive undertaking on its own. Unfortunately,

maintaining models once deployed also drains resources, as every new

update requires reintegration into the application. This means that even

if the model is deployed, all teams have their work cut out for them. For

these reasons, most models simply never make it past the prototype phase.

Until the emergence of MLOps principles, deploying solutions created

using the latest in machine learning technology served as a significant

challenge to businesses due to the amount of resources that would be

required. This is why MLOps is so crucial. It makes it significantly easier

to deploy and maintain your machine learning solutions by automating

most of the hard parts for you, massively expediting the development and

maintenance processes. With a fully automated setup, teams can keep up

with the latest in machine learning technology and deploy new models

quickly. Services can maintain their high level of performance and perhaps

even improve on this front as teams can deploy newer, more promising

model architectures.

Now that you have a better idea of what MLOps is about and why it is

so important, let’s jump into the details and look at how an ideal MLOps

implementation is set up.

Chapter 3 What Is MLOps?

87

 MLOps Setups
Before we look at any specific MLOps setups, let’s first establish three

different setups representing the various stages of automation: manual
implementation, continuous model delivery, and continuous
integration/continuous delivery of pipelines.

Manual implementation refers to a setup where there are no MLOps

principles applied and everything is manually implemented. The steps

discussed above in the creation of a machine learning model are all

manually performed. Software engineering teams must manually integrate

the models into the application, and operational teams must help ensure

all functionality is preserved along with collecting data and performance

metrics of the model.

Continuous model delivery is a good middle ground between a

manual setup and a fully automated one. Here, we see the emergence

of pipelines to allow for automation of the machine learning side of the

process. Note that we will mention this term quite often in the sections

below. If you’d like to get a better idea about what a pipeline is, refer to the

section titled “Pipelines and Automation” further down in this chapter.

For now, a pipeline is an infrastructure that contains a sequence of

components manipulating information as it passes through the pipeline.

The function of the pipeline can slightly differ within the setups, so be

sure to refer to the graphs and explanations to get a better idea of how the

pipeline in the example functions.

The main feature of this type of setup is that the deployed model

has pipelines established to continuously train it on new data, even

after deployment. Automation of the experimental stage, or the model

development stage, also emerges along with modularization of code

to allow for further automation in the subsequent steps. In this setup,

continuous delivery refers to expedited development and deployment of

new machine learning models. With the barriers to rapid deployment lifted

Chapter 3 What Is MLOps?

88

(the tediousness of manual work in the experimental stage) by automation,

models can now be created or updated at a much faster pace.

Continuous integration/continuous delivery of pipelines refers to

a setup where pipelines in the experimental stage are thoroughly tested

in an automated process to make sure all components work as intended.

From there, pipelines are packaged and deployed, where deployment

teams deploy the pipeline to a test environment, handle additional testing

to ensure both compatibility and functionality, and then deploy it to the

production environment. In this setup, pipelines can now be created

and deployed at a quick pace, allowing for teams to continuously create

new pipelines built around the latest in machine learning architectures

without any of the resource barriers associated with manual testing and

integration.

 Manual Implementation
Now that we’ve established three variations of setups, let’s look at the first

of the three deployment setups of machine learning models, which has no

MLOps principles integrated.

In this case, there is a team of data scientists and machine learning

engineers, who will now be referred to as the “model development team,”

manually performing data analysis and building, training, testing, and

validating their models. Once their model has been finalized, they must

create a model class and push this to a code repository. Software engineers

extract this model class and integrate it into an existing application or

system, and operational teams are in charge of monitoring the application,

maintaining functionality, and providing feedback to both the software

and model development teams.

Everything here is manual, meaning any new trends in the data lead

to the model development team having to update the model and repeat

the entire process again. This is quite likely to happen considering the

high volume of users interacting with your model every day. Combined

Chapter 3 What Is MLOps?

89

with performance metrics and user data collection, the information will

reveal a lot of aspects about your model as well as the user base the model

is servicing. Chances are high that you will have to update it to maintain

its performance on the new data. This is something to keep in mind as you

follow through with the process on the graph.

Refer to Figure 3-2 for a graphical representation of the setup.

Let’s go through this step by step. We can split the flow into roughly

two parts: the experimental stage, which involves the machine learning

side of the entire workflow, and the deployment stage, which handles

integration of the model into the application and maintaining operations.

Figure 3-2. Graph depicting a possible deployment setup of a
machine learning model without MLOps principles. The arrows with
a dotted border mean that progression to the next step depends upon
a condition in the current step. For example, in the model validation
step, machine learning engineers must ensure that the model meets a
minimum benchmark in performance before pushing a model class to
the repository

Chapter 3 What Is MLOps?

90

Experimental Stage:

 1. Data store: The data store refers to wherever data

relevant to data analysis and model development

is stored. An example of a data store could be using

Hadoop to store large volumes of data, which can

be used by multiple model development teams. In

this example, data scientists can pull raw data from

this data store to start performing experiments and

conducting data analysis.

 2. Process raw data: As previously mentioned, raw

data must be processed in order to collect the

relevant information. From there, it must also

be purged of faults and corrupted data. When a

company collects massive volumes of data every

day, some of it is bound to be corrupted or faulty

in some way eventually, and it’s important to get

rid of these points because they can harm the

data analysis and model development processes.

For example, one null value entry can completely

destroy the training process of a neural network

used for a regression (value prediction) task.

 3. Data analysis: This step involves analyzing all

aspects of the data. The general gist of it was

discussed earlier, but in the context of updating

the model, data scientists want to see if there are

any new trends or variety in data that they think

the model should be updated on. Since the initial

training process can be thought of as a small

representation of the real-world setting, there is a

fair chance that the model will need to be updated

Chapter 3 What Is MLOps?

91

soon after the initial deployment. This does depend

on how many characteristics of the true user base

the original training set captured however, but user

bases change over time, and so must the models. By

“user base,” we refer to the actual customers using

the prediction services of the model.

 4. Model building stage: This stage is more or less the

same as what we discussed earlier. The second time

around, when updating the model, it could turn out

that slight adjustments to the model layers may be

needed. In some of the worst cases, the current model

architecture being used cannot achieve a high enough

performance even with new data or architectural

tweaks. An entirely new model may have to be built,

trained, and validated. If there are no such issues,

then the model would just be further trained, tested,

validated, and pushed to the code repository upon

meeting some performance criteria.

• An important thing to note about this experimental

stage is that it is quite popular for experiments

to be conducted using Jupyter notebook. When

model development teams reach a target level

of performance, they must work on building

a workable model that can be called by other

code. For example, this can be done by creating

a model class with various functions that provide

functionality such as load_weights, predict, and

perhaps even evaluate to allow for easier gathering

of performance metrics. Since the true label can’t be

known in real-time settings, evaluation metrics can

simply be something like a root-mean-squared error.

Chapter 3 What Is MLOps?

92

Deployment Stage:

 5. Model deployment: In this case, this step is where

software engineers must manually integrate

the model into the system/application they are

developing. Whenever the model development

team finishes with their experiments, builds

a workable model, and pushes it to the code

repository, the engineering team must manually

integrate it again. Although the process may not be

that bad the second time around, there is still the

issue of fixing any potential bugs that may arise from

the new model. Additionally, engineering teams

must also handle testing of not only the model once

it is integrated into the application, but also of the

rest of the application.

 6. Model services: This step is where the model is

finally deployed and is interacting with the user

base in real time. This is also where the operational

team steps in to help maintain the functionality of

the software. For example, if there are any issues

with some aspect of the model functionality, the

operational team must record the bug and forward it

to the model development team.

 7. Data collection: The operational team can also

collect raw data and performance metrics. This

data is crucial for the company to operate since

that is how it makes its decisions. For example, the

company might want to know what service is most

popular with the user base, or how well the machine

learning models are performing so far. This job can

Chapter 3 What Is MLOps?

93

be performed by the application as well, storing all

the relevant data in some specific data store related

to the application.

 8. Data forwarded to data store: This step is where

the operational team sends the data to the data

store. Because there could be massive volumes of

data collected, it’s fair to assume some degree of

automation on behalf of the operational team on

this end. Additionally, the application itself could

also be in charge of forwarding data it collects to the

relevant data store.

 Reflection on the Setup

Right away, you can notice some problems that may arise from such an

implementation. The first thing to realize is that the entire experimental

stage is manual, meaning data scientists and machine learning engineers

must repeat those steps every time. When models are constantly exposed

to new data that is more than likely not captured in the original training

set, models must frequently be retrained so that they are always up to date

with current trends in user data. Unfortunately, when the entire process of

analyzing new trends, training, testing, and validating data is manual, this

may require significant resources over time, which may become unfeasible

for a company without the resources to spare. Additionally, trends in data

can change over time. For example, perhaps the age group with the largest

number of users logging into the site is comprised of people in their early

twenties. A year later, perhaps the dominant age group is now teenagers.

What was normal back then isn’t normal now, and this could lead to losses

in ad revenues, for example, if that’s the service (targeted advertising) the

model in this case provides.

Chapter 3 What Is MLOps?

94

Another issue is that tools such as Jupyter notebook are very popular

for prototyping and experimenting machine learning and deep learning

models. Even if the experiments aren’t carried out on notebooks, it’s likely

that work must be done in order to push the model to the source repo.

For example, constructing a model class with some important functions

such as load_weights, predict, and evaluate would be ideal for a model

class. Some external code may call upon load_weights() to set the model

weights from different training instances (so if the model has been further

trained and updated, simply call this function to get the new model). The

function predict() would then be called to make predictions based on

some input data and provide the services the application requires, and

the function evaluate() would be useful in keeping performance metrics.

Live data will almost never have truth labels on it (unless the user provides

instant feedback, like Google’s captchas where you select the correct

images), so a score metric like a root-mean-squared error can be useful

when keeping track of performance.

Once the model class is completed and pushed, software engineering

teams must integrate the model class into the overall application/system.

This could prove difficult the first time around, but once the integration

has been completed, updates to the model can be as simple as loading new

weights. Unfortunately, model architectures are likely to change, so the

software teams must reintegrate new model classes into the application.

Furthermore, deep learning is a complicated and rapidly evolving

field. Models that were cutting-edge several years ago can be far surpassed

by the current state-of-the-art models, so it’s important to keep updating

your model architectures and to make full use of the new developments in

the field. This means teams must continuously repeat the model-building

process in order to keep up with developments in the field.

Hopefully it is more clear that this implementation is quite flawed in

how much work is required to not only create and deploy the model in the

first place, but also to continuously maintain it and keep it up to par.

Chapter 3 What Is MLOps?

95

Alright, so how would we go about improving it? Where does this

MLOps come into play? To answer these questions, let’s look at the second

setup of the three defined earlier.

 Continuous Model Delivery
This setup contains pipelines for automatic training of the deployed

model as well as for speeding up the experimental process. Refer to

Figure 3-3 for a graphical representation of this setup.

This is a lot to take in at once, so let’s break it down and follow it

according to the numbers on the graph.

 1. Feature store: This is a data storage bin that

takes the place of the data store in the previous

example. The reason for this is that all data can now

be standardized to a common definition that all

Figure 3-3. Graph depicting a possible deployment setup of a
machine learning model with automation via pipelines

Chapter 3 What Is MLOps?

96

processes can use in this instance. For example, the

processes in the experimental stage will be using the

same input data as the deployed training pipeline

because all of the data is held to the same definition.

What is meant by common definition is that raw

data is cleansed and processed in a procedural

way that applies to all relevant raw data. These

processed features are then held in the feature store

for pipelines to draw from, and it is ensured that

every pipeline uses features processed according to

this standard. This way, any perceived differences

in trends between two different pipelines won’t be

attributed to deviances in processing procedures.

Presume for an instance that you are trying to provide

an object detection service that detects and identifies

various animals in a national park. All video feed

from the trail cameras (a video can be thought of as

a sequence of frames) can be stored as raw data, but

it can be possible that different trail cameras have

different resolutions. Instead of repeating the same

data processing procedure, you can simply apply the

same procedure (normalizing, scaling, and batching

the frames, for example) to the raw videos and store

the features that you know all pipelines will use.

 2. Data analysis: In this step, data analysis is still

performed to give data scientists and machine

learning engineers an idea of what the data looks

like, how it’s distributed, and so on, just like in the

manual setup. Similarly, this step can determine

whether or not to proceed with construction of a

new model or just update the current model.

Chapter 3 What Is MLOps?

97

 3. Automated model building and analysis: In this

step, data scientists and machine learning engineers

can select a model, set any specific hyperparameters,

and let the pipeline automate the entire process.

The pipeline will automatically process the data

according to the specifications of this model (take

the case where the features are 331x331x3 images

but this particular model only accepts images that

are 224x224x3), build the model, train it, evaluate

it, and validate it. During validation, the pipeline

may automatically tune the hyperparameters

as well optimize performance. It is possible that

manual intervention may be required in some

cases (debugging, for example, when the model is

particularly large and complex, or if the model has a

novel architecture), but automation should otherwise

take care of producing an optimal model. Once this

occurs, modularized code is automatically created so

that this pipeline can be easily deployed.

Everything in this stage is set up so that the

experimental stage goes very smoothly, requiring

only that the model is built. Depending on the level of

automation implemented, perhaps all that is required

is that the model architecture is selected with some

hyperparameters specified, and the automation takes

care of the rest. Either way, the development process

in the experimental stage is sped up massively. With

this stage going faster, more experiments can be

performed too, leading to possible boosts in overall

efficiency as productivity is increased and optimal

solutions can be found quicker.

Chapter 3 What Is MLOps?

98

 4. Modularized code: The experimental stage is set

up so that the pipeline and its components are

modularized. In this specific context, the data

scientist/machine learning engineer defines and

builds some model, and the data is standardized to

some definition. Basically, the pipeline should be

able to accept any constructed model and perform

the corresponding steps given some data without

hardcoding anything. (Meaning there isn’t any code

that will only work for a specific model and specific

data. The code works with generalized cases of

models and data.)

This is modularization, when the whole system

is divided into individual components that each

have their own function, and these components

can be switched out depending on variable inputs.

Thanks to the modularized code, when the pipeline

is deployed, it will be able to accept any new feature

data as needed in order to update the deployed

model. Furthermore, this structure also lets it

swap out models as needed, so there’s no need to

construct the entire pipeline for every new model

architecture.

Think of it this way: the pipeline is a puzzle piece,

and the models along with their feature data are

various puzzle pieces that can all fit within the

pipeline. They all have their own “image” on the

piece and the other sides can have variable shapes,

but what is important is that they fit with the

pipeline and can easily be swapped out for others.

Chapter 3 What Is MLOps?

99

 5. Deploy pipeline: In this step, the pipeline is

manually deployed and is retrieved from the

source code. Thanks to its modularization, the

pipeline setup is able to operate independently

and automatically train the deployed model on

any new data if needed, and the application is

built around the code structure of the pipeline

so all components will work with each other

correspondingly. The engineering team has to build

parts of the application around the pipeline and its

modularized components the first time around, but

after that, the pipelines should work seamlessly with

the applications so as long as the structure remains

the same. Models are simply swapped, unlike before

when the model had to be manually integrated into

the application. This time, the pipeline must be

integrated into the application, and the models are

simply swapped out.

However, it is important to mention that pipeline

structures can change depending on the model. The

main takeaway here is that pipelines should be able

to handle many more models before having to be

restructured compared to the setup before where

“swapping” models meant you only loaded updated

weights. Now, if several architectures all have

common training, testing, and validation code, they

can all be used under the same pipeline.

 6. Automated training pipeline: This pipeline

contains the model that provides its services and

is set up to automatically fetch new features upon

activation of the trigger. The conditions for trigger

Chapter 3 What Is MLOps?

100

activation will be discussed in item 10. When the

pipeline finishes updating a trained model, the

model is saved to a model registry, a type of storage

unit that holds trained models for ease of access.

 7. Model registry: This is a storage unit that

specifically holds model classes and/or weights. The

purpose of this unit is to hold trained models for

easy retrieval by an application, for example, and it

is a good component to add to an automation setup.

Without the model registry, the model classes and

weights would just be saved to whatever source code

repository is established, but this way, we make the

process simpler by providing a centralized area of

storage for these models. It also serves to bridge the

gap between model development teams, software

development teams, and operational teams since it

is accessible by everyone, which is ultimately what

we want in an ideal automation setup.

This registry along with the automated training

pipeline assures continuous delivery of model
services since models can frequently be updated,

pushed to this registry, and deployed without having

to go through the entire experimental stage.

 8. Model services: Here the application pulls the

latest, best performing model from the model

registry and makes use of its prediction services.

This action then goes on to provide the desired

functionality in the application.

Chapter 3 What Is MLOps?

101

 9. Performance and user data collection: New

data is collected as usual along with performance

metrics related to the model. This data goes to

the feature store, where the new data is processed

and standardized so that it can be used in both the

experimental stage and the deployment stage and

there are no discrepancies between the data used by

either stage. Performance data is stored so that data

scientists can tell how the model is performing once

deployed. Based on that data, important decisions

such as whether or not to build a new model with a

new architecture can be made.

 10. Training pipeline trigger: This trigger, upon

activation, initiates the automated training pipeline

for the deployed model and allows for feature

retrieval by the pipeline from the feature store. The

trigger can have any of the following conditions,

although it is not limited to them:

• Manual trigger: Perhaps the model is to be trained

only if the process is manually initiated. For

example, data science teams can choose to start

this process after reviewing performance and data

and concluding that the deployed model needs to

train on fresh batches of data.

• Scheduled training: Perhaps the model is set to

train on a specific schedule. This can be a certain

time on the weekend, every night during hours of

lowest traffic, every month, and so on.

Chapter 3 What Is MLOps?

102

• Performance issues: Perhaps performance data

indicates that the model’s performance has dipped

below a certain benchmark. This can automatically

activate the training process to attempt to get the

performance back up to par. If this is not possible

or is taking too many resources, data scientists and

machine learning engineers can choose to build

and deploy a new model.

• Changes in data patterns: Perhaps changes in

the trends of the data have been noticed while

creating the features in the feature store. Of course,

the feature store isn’t the only possible place that

can analyze data and identify any new trends

or changes in the data. There can be a separate

process/program dedicated to this task, which can

decide whether or not to activate the trigger.

This would also be a good condition to begin the

training process, since the new trends in the data

are likely to lead to performance degradation.

Instead of waiting for the performance hit to

activate the trigger, the model can begin training

on new data immediately upon sufficient

detection of such changes in the data, allowing

for the company to minimize any potential losses

from such a scenario.

 Reflection on the Setup

This implementation fixes many of the issues from the previous setup.

Thanks to the integration of pipelines in the experimental stage, the

previous problem of having the entire stage be composed of manual

Chapter 3 What Is MLOps?

103

processes is no longer a concern. The pipeline automates the whole

process of training, evaluating, and validating a model. The model

development team now only needs to build the model and reuse any

common training, evaluation, and validation procedures that are still

applicable to this model. At the end of the model development pipeline,

relevant model metrics are collected and displayed to the operator. These

metrics can help the model development team to prototype quickly and

arrive at optimal solutions even faster than they would have without the

automation since they can run multiple pipelines on different models and

compare all of them at once.

Automated model creation pipelines in the experimental stage

allow for teams to respond faster to any significant changes in the data

or any issues with the deployed model that need to be resolved. Unlike

before, where the only model swapping was the result of loading updated

weights for the same model, these pipelines are structured to allow for

various models with different architectures as long as they all use the

same training, evaluation, and validation procedures. Thanks to the

modularized code, the pipeline can simply swap out model classes and

their respective weights once deployed. The modularization allows for

easier deployment of the pipeline and lets models be swapped out easily to

allow for further training of any model during deployment. Should a model

require special attention from the model development team, it can simply

be trained further by the team and swapped back in once it is ready. Now

teams can respond much more quickly by being able to swap models in

and out in such a manner.

The pipelines also make it much easier for software engineering

teams and operational teams to deploy the pipelines and models. Because

everything is modularized, teams do not have to work on integrating

new model classes into the application every time. Everyone benefits,

and model development teams do not have to be as hesitant about

implementing new architectures so as long as the new model still uses the

same training, evaluation, and validation code as in the existing pipeline.

Chapter 3 What Is MLOps?

104

While this setup solves most of the issues that plagued the original

setup, there are still some important problems that remain. Firstly, there

are no mechanisms in place to test and debug the pipelines, so this must

all be done manually before it is pushed to a source repository. This can

become a problem when you’re trying to push many iterations of pipelines,

such as when you’re building different models with architectures that

differ in how they must be trained, tested, and validated. Perhaps the latest

models are showing a vast improvement over the old state-of-the art, and

your team wants to implement these new solutions as soon as possible. In

situations like this, teams will frequently need to debug and test pipelines

before pushing them to source code for deployment. In this case, there is

still some automation left to be done to avoid manual work.

Pipelines are also manually deployed, so if the structure in the code

changes, the engineering teams must rebuild parts of the application to

work with the new pipeline and its modularized code. Modularization

works smoothly when all components know what to expect from

each other, but if the code of one of the components changes so that

it isn’t compatible anymore, either the application must be rebuilt to

accommodate the new changes or the component must be rewritten to

work with the original pipeline. Unfortunately, new model architectures

may require that part of the pipeline itself be rewritten, so it is likely

that the application itself must be worked on to accommodate the new

pipeline.

Hopefully you begin to see the vast improvements that automation

has made in this setup, but also the issues that remain to be solved. The

automation has solved the issue of building and creating new models, but

the problem of building and creating new pipelines still remains.

To find an answer to that problem, let’s take a look at the last of the

three setups defined earlier.

Chapter 3 What Is MLOps?

105

 Continuous Integration/Continuous Delivery
of Pipelines
In this setup, we will be introducing a system to thoroughly test pipeline

components before they are packaged and ready to deploy. This will ensure

continuous integration of pipeline code along with continuous delivery of
pipelines, crucial elements of the automation process that the previous setup

was missing. Refer to Figure 3-4 for a graphical representation of such a setup.

Though this is mostly the same setup, we will go through it again step

by step with an emphasis on the newly introduced elements.

 1. Feature store: The feature store contains

standardized data processed into features. Features

can be pulled by data scientists for offline data

analysis. Upon activation of the trigger, features can

also be sent to the automated training pipeline to

further train the deployed model.

Figure 3-4. Graph depicting added testing systems and a package
store to the automation setup in Figure 3-2

Chapter 3 What Is MLOps?

106

 2. Data analysis: This step is performed by data

scientists on features pulled from the feature store.

The results from the analysis can determine whether

or not to build a new model or adjust the architecture

of an existing model and retrain it from there.

 3. Automated model building and analysis: This

step is performed by the model development team.

Models can be built by the team and passed into the

pipeline, assuming that they are compatible with the

training, testing, and validation code, and the entire

process is automatically conducted with a model

analysis report generated at the end. In the case

where the team wants to implement some of the

latest machine learning architectures, models will

have to be created from scratch with integration into

pipelines in mind to maintain modularity. Parts of

the pipeline code may have to change as well, which

is acceptable because the new components of this

setup can handle this automatically.

 4. Modularized code: Once the model reaches a

minimum level of performance in the validation

step, the pipeline, its components, and the model

are all ready to be modularized and stored in a

source repository.

 5. Source repository: The source repository holds

all of the packaged pipeline and model code for

different pipelines and different models. Teams can

create multiples at once for different purposes and

store them all here. In the old setup, pipelines and

models would be pulled from here and manually

Chapter 3 What Is MLOps?

107

integrated and deployed by software engineering

teams. In this setup, the modularized code must

now be tested to make sure all of the components

will work correctly.

 6. Testing: This step is crucial in achieving continuous
integration, or a result of automation where

new components and elements are continuously

designed, built, and deployed in the new

environment.

Pipelines and their components, including the

model, must be thoroughly tested to ensure that

all outputs are correct. Furthermore, the pipelines

themselves must be tested so that they are

guaranteed to work with the application and how it

is designed. There shouldn’t be bugs in the pipeline,

for example, that would break its compatibility with

the application. The application is programmed to

expect a specific behavior from the pipeline, and the

pipeline must behave correspondingly.

If you are familiar with software development, the

testing of pipeline components and the models is

similar to the automated testing that developers

write to check various parts of an application’s

functionality. A simple example is automated testing

to ensure data of various types are successfully

received by the server and are added to the correct

databases.

Chapter 3 What Is MLOps?

108

With pipelines and machine learning models, some

examples of testing include:

• Does the validation testing procedure lead to

correct tuning of the hyperparameters?

• Does each pipeline component work correctly?

Does it output the expected element? For example,

after model evaluation, does it correctly begin the

validation step? (Alternatively, if model evaluation

goes after model validation, does the evaluation

step correctly initiate?)

• Is the data processing performed correctly? Are

there any issues with the data post-processing

that would lead to poor model performance?

Avoiding this outcome is for the best since it would

waste resources having to fix the data processing

component. If the business relies on rapid pipeline

deployment, then avoiding this type of scenario is

even more crucial.

• Does the data processing component correctly

perform data scaling? Does it correctly perform

feature engineering? Does it correctly transform

images?

• Does the model analysis work correctly? You

want to make sure that you’re basing decisions

on accurate data. If the model truly performs well

but faults in the model analysis component of the

pipeline lead the data scientist/machine learning

engineer to believe the model isn’t performing that

well, then it could lead to issues where pipeline

deployment is slowed down. Likewise, you don’t

Chapter 3 What Is MLOps?

109

want the model analysis to be displaying the wrong

information, even if it mistakenly displays precision

for accuracy.

The more thorough the automated testing, the

better the guarantee that the pipeline will operate

within the application without issues. (This doesn’t

necessarily include model performance as that has

to do more with the model architecture, how the

model is developed, and what it is capable of.)

Once the pipeline passes all the tests, it is then

automatically packaged and sent to a package store.

Continuous integration of pipelines is now achieved

since teams can build modularized and tested

pipelines much more quickly and have them ready

for deployment.

 7. Package store: The package store is a containment

unit that holds various packaged pipelines. It is

optional but included in this setup so that there

is a centralized area where all teams can access

packaged pipelines that are ready for deployment.

Model development teams push to this package

store, and software engineers and operational

teams can retrieve a packaged pipeline and deploy

it. In this way, it is similar to the model registry in

that both help achieve continuous delivery. The

package store helps achieve continuous delivery of

pipelines just as the model registry helps achieve

continuous delivery of models and model services.

Thanks to automated testing providing continuous

integration of pipelines and continuous delivery of

Chapter 3 What Is MLOps?

110

pipelines via the package store, pipelines can also be

deployed rapidly by operational teams and software

engineers. With this, businesses can easily keep

up with the latest trends and advances in machine

learning architectures, allowing for better and better

performance and more involved services.

 8. Deploy pipeline: Pipelines can be retrieved

from the package store and deployed in this step.

Software engineering and operational teams must

ensure that the pipeline will integrate without

incident into the application. Because of that,

there can be more testing on the part of software

engineering teams to ensure proper integration of

the pipeline. For example, one test can be to ensure

the dependencies of the pipeline are considered

in the application (if, for example, TensorFlow has

updated and contains new functionality the pipeline

now uses, the application should update its version

of TensorFlow as well).

Teams usually want to deploy the pipelines into

a test environment where it will be subjected

to further automated testing to ensure full

compatibility with the application. This can be

done automatically, where the pipelines go from

the package store into the test environment, or

manually, where teams decide to deploy the

pipeline into the test environment. After the

pipeline passes all the tests, teams can choose to

manually deploy the pipeline into the production

environment or have it automatically done.

Chapter 3 What Is MLOps?

111

Either way, pipeline creation and deployment is a

much faster process now especially since teams do

not have to manually test the pipelines and they do

not have to build or modify the application to work

with the pipeline every time.

 9. Automated training pipeline: The automated

training pipeline, once deployed, exists to further

train models upon activation of the trigger. This

helps keep models as up to date as possible on new

trends in data and maintain high performance for

longer. Upon validation of the model, models are

sent to the model registry where they are held until

they are needed for services.

 10. Model registry: The model registry holds trained

models until they are needed for their services.

Once again, continuous delivery of model services

is achieved as the automated training pipeline

continuously provides the model registry with high-

performance machine learning models to be used to

perform various services.

 11. Model services: The best models are pulled from

the model registry to perform various services for

the application.

 12. Performance and user data collection: Model

performance data and user data is collected to be

sent to model development teams and the feature

store, respectively. Teams can use the model

performance metrics along with the results from

the data analysis to help decide their next course of

action.

Chapter 3 What Is MLOps?

112

 13. Training pipeline trigger: This step involves some

condition being met (refer to the previous setup,

continuous model delivery) to initiate the training

process of the deployed pipeline and feed it with

new feature data pulled from the feature store.

 Reflection on the Setup

The main issue of the previous setup that this one fixes is that of pipeline

deployment. Previously, pipelines had to be manually tested by machine

learning teams and operational teams to ensure that the pipeline and

its components worked, and that the pipeline and its components

were compatible with the application. However, in this setup, testing is

automated, allowing for teams to much more easily build and deploy

pipelines than before. The biggest advantage to this is that businesses can

now keep up with significant changes in the data requiring the creation

of new models and new pipelines, and can also capitalize on the latest

machine learning trends and architectures all thanks to rapid pipeline

creation and deployment combined with continuous delivery of model

services from the previous setup.

The important thing to understand from all these examples is that

automation is the way to go. Machine learning technology has progressed

incredibly far within the last decade alone, but finally, the infrastructure to

allow you to capitalize on these advancements is catching up.

Hopefully, after seeing the three possible MLOps setups, you

understand more about MLOps and how implementations of MLOps

principles might look. You might have noticed that pipelines have been

mentioned quite often throughout the descriptions of the setups, and you

might be wondering, “What are pipelines, and why are they so crucial for

automation?”

To answer that question, let’s take a look at what a “pipeline” really is.

Chapter 3 What Is MLOps?

113

 Pipelines and Automation
Pipelines are an important part of automation setups employing DevOps

principles. One way to think about a pipeline is that it is a specific, often

sequential procedure that dictates the flow of information as it passes

through the pipeline. To see an example of a testing pipeline in a software

development setting, refer to Figure 3-5.

In the MLOps setups above, you’ve seen pipelines for automating the

process of training a deployed model and for building, testing, and packing

pipelines as well as for testing integration of packaged pipelines before

deploying them to the production environment.

So, what does all that really mean? To get a better idea of what exactly

goes on in a pipeline, let’s follow the flow of data through a pipeline in the

experimental stage. Even if you understand how pipelines work, it may

be worth following the example anyway as we now look at this pipeline

through the context of using MLOps APIs.

Figure 3-5. A testing pipeline in a software development setting.
The pipeline for testing packaged model pipelines in the optimal
setup above is similar in that individual components must be tested,
components must be tested in groups, and in the case where pipelines
are deployed to a test environment first where further tests are
performed before they are deployed to the production environment

Chapter 3 What Is MLOps?

114

 Journey Through a Pipeline
We will be looking at the model development pipeline in the experimental

stage. Before we begin, it is important to mention that we will be

referencing API calls in this pipeline. This is because some APIs can be

called while executing scripts or even Jupyter cells at key points in the

model’s development, giving MLOps monitoring software information on

model training, model evaluation, and model validation. At the end of the

pipeline, the MLOps software would also ready the model for deployment

via functionality provided by the API.

You will read more about this API in the next chapter, Chapter 4, but

for now, you may assume that the API will take care of automation as you

follow along through the example.

 Model Selection

As seen in Figure 3-4, the experimental pipeline begins with the selection

of a model. This is up to the operator, who must now choose and build a

model. Some APIs allow you to call their functionality while building the

model to connect with MLOps software as the rest of the process goes

on. This software then keeps track of all relevant metrics related to the

model’s development along with the model itself in order to initiate the

deployment process.

In this case, the operator has chosen to use a logistic regression. Refer

to Figure 3-6.

Chapter 3 What Is MLOps?

115

 Data Preprocessing

With the model now selected and built, and with feature data supplied by

the feature store, the process can now move forward to the next stage in

the pipeline: data preprocessing. Refer to Figure 3-7.

Figure 3-6. A graphical representation of a pipeline where the
operator has selected a logistic regression model. The rest of the steps
have been hidden for now and will appear as we gradually move
through the pipeline

Chapter 3 What Is MLOps?

116

The data preprocessing can be done manually or automatically. In

this case, the data preprocessing only involves normalization and resizing

of image feature data, so the operator can implement this manually.

Depending on the level of automation, the operator can also call some

function that takes in data and automatically processes it depending on

the type of data and any other parameters provided.

Either way, the end of the processing stage will result in the data being

broken up into subsets. In this example, the operator chose to create a

training set, a testing set, and a validation set. Now, the operator can begin

the training process.

 Training Process

Depending on the framework being used, the operator can further split

up the training data into a training set and a data validation set and use

both in the training process. The data validation set exists totally separate

Figure 3-7. The operator has chosen to normalize and resize the
image data. The process creates a training set, a testing set, and a
validation set

Chapter 3 What Is MLOps?

117

from the training set (although it is derived from it) since the model never

sees it during training. Its purpose is to periodically evaluate the model’s

performance on a data set that it has never seen before. Refer to Figure 3-8.

In the context of deep learning, for example, the model can evaluate

on the validation set at the end of each epoch, generating some metric

data for the operator to see. Based on this, the operator can judge how

the model is doing and whether or not it could be overfitting and adjust

hyperparameters or model structure if needed.

The API can also be told what script to run in order to initiate this

entire pipeline process. The script can contain the training, evaluation,

and validation code all at once so the API can run this entire pipeline when

needed.

Once the training process is done, the process moves to the evaluation

stage.

Figure 3-8. The model training process begins

Chapter 3 What Is MLOps?

118

 Model Evaluation

In the evaluation stage, the model’s performance is measured on a test

data set that it has never seen. This performance will indicate to the

operator whether or not the model is overfitting, especially if it performed

extremely well in training but has trouble replicating those results in this

stage. That is part of why the training data can be split to include some

validation data, as it can be an early indicator of overfitting. This can be

crucial especially if the model takes a significant amount of time to run.

You would rather know earlier, partway through training, if the model

is overfitting, rather than after it ran all night and is evaluated the next

morning. Refer to Figure 3-9.

Figure 3-9. Training results are stored in a common area (for
example, the API could be called to monitor these results) for the
metrics of the current model. Model evaluation begins on the trained
model using the testing set

Chapter 3 What Is MLOps?

119

Another thing to note again is that the validation stage could come

before the evaluation stage, but in this case, the trained model will be

evaluated first on a test data set before the validation stage begins. This

is just to get a sense of how the model does on the testing set before

hyperparameter tuning begins. Of course, hyperparameter tuning via the

validation step could be performed first before the final model evaluation,

but in some frameworks, model evaluation would come first. An example

of this is a validation process like scikit-learn’s cross-validation. Of course,

you can evaluate the tuned model on the test set once again to get a final

performance evaluation.

Once the evaluation finishes, metrics are stored by the API or by some

other mechanism that the team has implemented, and the process moves

on to the validation stage.

 Model Validation

In this stage, the model begins the validation process, which attempts

to seek the best hyperparameters. You could combine the use of a script

to iterate through various configurations of hyperparameter values

and utilize k-fold cross-validation, for example, to help decide the best

hyperparameters. Refer to Figure 3-10.

Chapter 3 What Is MLOps?

120

In any case, the point of a validation set is to help tune the model’s

hyperparameters. The team could even automate this process entirely

if they tend to train a lot of models of the same few types, saving

time and resources in the long run by automating the validation and

hyperparameter tuning process for that set of models.

Finally, once the model achieves a good level of performance and

finishes the validation stage, the validation results are stored, and all

relevant data is displayed as a summary to the operator. Again, depending

on the level of automation, perhaps the model is retrained and evaluated

on the best hyperparameter setup discovered in the validation stage. The

API simply needs to be told what metrics to track and it will automatically

do so.

Figure 3-10. Evaluation metrics are stored along with the training
metrics by the API, and the validation process begins

Chapter 3 What Is MLOps?

121

 Model Summary

At this point, the operator can compare the outcome of this experiment

with that of other models, using the metrics as baselines for comparison.

The API can track the relevant metrics for different model runs and can

compare them all at the same time. Should the operator decide to move

forward with this particular model, the API and the MLOps software

can allow for deployment on a simple click of a button. Usually, the

deployment is to a staging environment first, where the functionality can

be tested further before moving directly into the production environment.

Everything is configurable, and the API can adapt to the needs of the

business and its workflow. If the developers want to deploy straight to

production, sure, though that could potentially be unwise considering the

case of failure. Refer to Figure 3-11.

Figure 3-11. Validation is complete, and all metrics are displayed to
the operator

Chapter 3 What Is MLOps?

122

After the model passes the tests in the staging environment, it can

then be deployed to the production environment, where it can be further

monitored by the software.

Hopefully now you have a better understanding of what a pipeline

really is. The pipelines for models and pipeline integration testing are

similar, except they are assisted by MLOps software and APIs such as

Databricks and MLFlow, for example. Let’s now look at how you can go

about using those APIs and software to help you implement MLOps.

 How to Implement MLOps
MLOps sounds great. It helps you deploy machine learning models rapidly

and helps maintain them once they’re deployed. However, the biggest

problem now seems to be the question of how to get there. The level of

automation described in the setups requires significant work from both the

“ML” and “Ops” sides of the workflow to achieve it. It almost seems better

in the short run to build and deploy the models manually rather than

devote resources to setting up the entire infrastructure, but this is simply

unsustainable in the long run.

Also, Jupyter is great for performing experiments, so is there a way to

track them as well? This sort of functionality would be extremely useful

especially when teams are implementing advanced machine learning

architectures from scratch, as it would let them compare the new models

across all of the relevant metrics with deployed models or current

architectures. Tasks like these are more convenient to do in a notebook

and having to convert everything to a proper model file is simply further

work.

The takeaway here is that accounting for these factors and more would

require significant resources to plan, develop, and test. For smaller-scale

businesses, this is an undertaking that’s possibly beyond their reach. So,

what now?

Chapter 3 What Is MLOps?

123

The good news is that are a great assortment of tools available to use

now that essentially implement all of the automation for you, such as

the API we looked at in the pipeline example earlier. Several examples of

such tools that we will explore in later chapters are MLFlow, Databricks,

AWS SageMaker, Microsoft Azure, Google Cloud, and Datarobots. With

these tools, implementing MLOps principles into your workflow will be

significantly easier.

In the case of MLFlow, integrating it into code is extremely simple.

You only have to write a couple lines of code to track all of the metrics

you need. The functionality of the API we looked at earlier in the pipeline

example is all provided by MLFlow. Furthermore, MLFlow also saves the

model for you, allowing for model serving functionality where given some

data, the model returns its predictions.

MLFlow also integrates into Databricks, AWS SageMaker, Microsoft

Azure, and can be deployed to Google Cloud as well, all of which are

tools that help manage your MLOps setup and serve as platforms to

deploy your models on. While the cloud platforms do provide some

MLOps functionality, with the extent of this varying for each platform, the

advantage of using MLFlow is that it lets you have the freedom of choice

when it comes to one platform to commit to. Furthermore, it gives you a

greater degree of freedom, as you can perform all the experiments locally

and offline, and you can support models from many different frameworks.

MLFlow also provides functionality to help you modularize any custom-

built models or models made from other frameworks not explicitly

supported.

And so, to really answer the question of how to implement MLOps,

you will get familiar with MLFlow and explore each of those tools. The goal

is to take the model we built in Chapter 2 all the way to deployment and

beyond.

Chapter 3 What Is MLOps?

124

 Summary
MLOps is a set of principles and practices adopted from DevOps and

applied to machine learning. You explored three different types of MLOps

setups with varying degrees of automation: manual implementation,

continuous model delivery, and continuous integration/continuous
delivery of pipelines. You identified that the manual implementation was

riddled with issues regarding scalability and efficiency and you explored

a setup that ensured continuous model delivery. Although this setup

fixed many of the issues found in the manual setup, there were still some

problems with pipeline integration testing to be solved. The final setup

solved this issue too and ensured continuous integration and delivery of

pipelines, completing the total automation setup.

You also looked into what a pipeline really is so that you can

understand why they are so crucial to the automation setup. Finally, you

learned about some tools that can help you implement MLOps into your

workspace, avoiding the trouble of implementing all the automation from

scratch. In the next chapter, you will look at MLFlow, an excellent API that

lets you implement your own MLOps setups and is compatible with many

platforms and frameworks.

Chapter 3 What Is MLOps?

125© Sridhar Alla, Suman Kalyan Adari 2021
S. Alla and S. K. Adari, Beginning MLOps with MLFlow,
https://doi.org/10.1007/978-1-4842-6549-9_4

CHAPTER 4

Introduction
to MLFlow
In this chapter, we will cover what MLFlow is, what it does, and how

you can implement MLOps setups into your existing projects. More

specifically, we will cover how you can integrate MLFlow with scikit-learn,

TensorFlow 2.0+/Keras, PyTorch, and PySpark. We will go over experiment

creation; metric, parameter, and artifact logging; model logging; and how

you can deploy models on a local server and query them for predictions.

 Introduction
In the previous chapter, we went over what an optimal MLOps setup

looks like. However, the level of automation presented would require

an immense amount of resources dedicated to the project. Fortunately,

there are APIs that do this for you, such as MLFlow. MLFlow is an API that

allows you to integrate MLOps principles into your projects with minimal

changes made to existing code. With just a couple lines of code here and

there, you can track all of the details relevant to the project that you want.

Furthermore, you can even save the model for future use in deployment,

for example, and you can compare all of the metrics between individual

models to help you select the best model.

https://doi.org/10.1007/978-1-4842-6549-9_4#DOI

126

The great thing about MLFlow is that it abstracts everything for you.

It packages and modularizes the models for you so that when you deploy

the model and want to make predictions, all you need to do is simply pass

in the input data in a certain format. All of the modularization that we

discussed in the previous chapter with the pipelines is taken care of by

MLFlow. MLFlow also allows you to create a wrapper around your model

if your model prediction code needs to be different. We will look at this

functionality in detail in the next chapter, when you deploy your models to

Amazon SageMaker. Even with custom code, MLFlow will modularize it so

that it will still work the same way as any other model once it is deployed

and ready to make predictions.

In detail, we will go over the following in this chapter:

• Creating experiments: Experiments in MLFlow

essentially allow you to group your models and any

relevant metrics. For example, you can compare

models that you’ve built in TensorFlow and in PyTorch

and name this experiment something like

pytorch_tensorflow. In the context of anomaly

detection, you can create an experiment called

model_prototyping and group all of the models that

you want to test by running the training pipelines after

setting model_prototyping as the experiment name.

As you’ll see shortly, grouping model training

sessions by experiment can really help organize

your workspace because you’ll get a clear idea of the

context behind trained models.

• Model and metric logging: MLFlow allows you to

save a model in a modularized form and log all of the

metrics related to the model run. A model run can be

thought of as the model training, testing, and validation

Chapter 4 IntroduCtIon to MLFLow

127

pipeline from the previous chapter. In MLFlow, you

can mark the start and the end of each run and decide

which metrics you want to save. Additionally, you can

save graphs, so you can also view plots like confusion

matrices and ROC curves. A model run is basically the

instance in which MLFlow executes the code that you

tell it to, so if you want, you can only train the model

and leave it at that.

It is possible for you to train, evaluate, and even

validate your model, logging all of the metrics for

each respective step in the whole process. MLFlow

gives you a lot of flexibility in how you define

a model run. You can end the run after simply

training it, or you can end the run after training

and evaluating it. If you wish, you can even set up

an entire validation script to log the entire process

for you, allowing you to much more easily compare

different hyperparameter setups all at once in

MLFlow. We will explore how to perform model

validation with MLFlow shortly when we revisit the

scikit-learn experiment from Chapter 2.

• Comparing model metrics: MLFlow also allows you

to compare different models and their metrics all at

once. And so, when performing validation to help

tune a model’s hyperparameters, you can compare all

of the selected metrics together in MLFlow using its

user interface. In the previous chapter, you printed out

everything, making the cell output possibly very large

if the script is quite involved in its hyperparameter

setups.

Chapter 4 IntroduCtIon to MLFLow

128

• Model Registry: MLFlow also adds functionality to

allow you to implement a model registry, allowing you

to define what stage a particular model is in. Databricks

integrates quite well with MLFlow, providing built-

in model registry functionality. You will explore how

to use the MLFlow Model Registry when you look at

Databricks in Appendix.

• Local deployment: MLFlow also allows you to

deploy on a local server, allowing you to test model
inference. Model inference is basically the prediction

process of a model. Data is sent to the model in one of

several standardized formats, and MLFlow returns the

predictions made by the model.

Such a setup can easily be converted to work on

a hosted server as well. As you will see in the next

several chapters, MLFlow also allows you to deploy

your models on popular cloud services such as

Amazon SageMaker, Microsoft Azure, Google Cloud,

and Databricks. The process at its core remains

similar to how you will perform local model serving.

The only difference comes with where you host the

model and the particular procedure for querying it.

With that being said, let’s get started by revisiting the scikit-learn

logistic regression model and integrating MLFlow into it.

Chapter 4 IntroduCtIon to MLFLow

129

 MLFlow with Scikit-Learn
Before we begin, here are the versions of Python and the packages that

were used:

• Python: 3.6.5

• numpy: 1.18.5

• scikit-learn: 0.22.2.post1

• pandas: 1.1.0

• Matplotlib: 3.2.1

• Seaborn: 0.10.1

• MLFlow: 1.10.0

You don’t need the exact versions of the packages we used, but in case

some functionality is removed, renamed, or just changed in the newer

versions and the code runs into an error, you have the exact version of the

module you can try running the code with.

MLFlow in particular is updated quite frequently, so you are more

likely to run into issues running code with something like MLFlow

compared to a package like numpy.

With that being said, let’s dive into the first example. In this case, let’s

revisit the scikit-learn code from the previous chapter and add MLFlow

integration to it.

 Data Processing
First, you begin with all of the imports:

import numpy as np

import pandas as pd

import matplotlib #

Chapter 4 IntroduCtIon to MLFLow

130

import matplotlib.pyplot as plt

import seaborn as sns

import sklearn #

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import roc_auc_score, plot_roc_curve,

confusion_matrix

from sklearn.model_selection import KFold

import mlflow

import mlflow.sklearn

print("Numpy: {}".format(np.__version__))

print("Pandas: {}".format(pd.__version__))

print("matplotlib: {}".format(matplotlib.__version__))

print("seaborn: {}".format(sns.__version__))

print("Scikit-Learn: {}".format(sklearn.__version__))

print("MLFlow: {}".format(mlflow.__version__))

The output should look something like Figure 4-1.

Figure 4-1. The output of importing the necessary modules and
printing out their versions

Chapter 4 IntroduCtIon to MLFLow

131

Now you can move on to loading the data:

data_path = "data/creditcard.csv"

df = pd.read_csv(data_path)

df = df.drop("Time", axis=1)

Refer to Figure 4-2 to see the code in a cell.

Note that you are once again dropping the column Time.

You can now check to see if the data loaded in correctly:

df.head()

Refer to Figure 4-3 to see the head()function.

Figure 4-2. Loading the data set and dropping the column named
Time because it adds very large data values that ultimately don’t have
much of a correlation with the column Class. Model performance is
boosted slightly simply by dropping the extraneous information

Figure 4-3. Verifying that the data was loaded correctly by using
the head() function. As you can see, the columns and the data have
loaded in correctly

Chapter 4 IntroduCtIon to MLFLow

132

Again, you are dropping the column Time from the data frame this

time. This is because this column was found to add data that isn’t very

helpful in finding an anomaly and only adds extra complexity to the data.

In the case of deep learning models, your model might eventually learn

that the Time data does not correlate very well with the Class labels and

may place less importance on nodes processing that data. Eventually, it

might even ignore the Time data. However, you can speed up the learning

process by cutting out these types of features from your training sets. This

is because you’re sparing the models the time and resources needed to

figure that out.

Moving on, you will split the normal points and the anomalies:

normal = df[df.Class == 0].sample(frac=0.5,

random_state=2020).reset_index(drop=True)

anomaly = df[df.Class == 1]

Let’s print out their respective shapes:

print(f"Normal: {normal.shape}")

print(f"Anomaly: {anomaly.shape}")

Refer to Figure 4-4 to see the above two cells in Jupyter along with their

outputs.

Figure 4-4. Randomly sampling 50% of all the normal data points
in the data frame and picking out all of the anomalies from the data
frame as separate data frames. Then, you print the shapes of both
data sets. As you can see, the normal points massively outnumber the
anomaly points

Chapter 4 IntroduCtIon to MLFLow

133

You are going to split the normal and anomaly sets into train-test-

validate subsets. Run the following two code blocks:

normal_train, normal_test = train_test_split(normal,

test_size = 0.2, random_state = 2020)

anomaly_train, anomaly_test = train_test_split

(anomaly, test_size = 0.2, random_state = 2020)

normal_train, normal_validate = train_test_split(normal_train,

test_size = 0.25, random_state = 2020)

anomaly_train, anomaly_validate = train_test_split

(anomaly_train, test_size = 0.25, random_state = 2020)

Refer to Figure 4-5 to see both code blocks in their respective cells.

Now, you can process these sets and create the x-y splits:

x_train = pd.concat((normal_train, anomaly_train))

x_test = pd.concat((normal_test, anomaly_test))

x_validate = pd.concat((normal_validate, anomaly_validate))

y_train = np.array(x_train["Class"])

y_test = np.array(x_test["Class"])

y_validate = np.array(x_validate["Class"])

Figure 4-5. Partitioning the normal and anomaly data frames
separately into train, test, and validation splits. Initially, 20% of
the normal and anomaly points are used as the test split. From
the remaining 80% of data, 25% of that train split is used as the
validation split, meaning the validation split is 20% of the original
data. This leaves the final training split at 60% of the original data. In
the end, the train-test-validate split has a 60-20-20 ratio, respectively

Chapter 4 IntroduCtIon to MLFLow

134

x_train = x_train.drop("Class", axis=1)

x_test = x_test.drop("Class", axis=1)

x_validate = x_validate.drop("Class", axis=1)

Refer to Figure 4-6 to see the above code block in a cell.

You can print out the shapes of these sets:

print("Training sets:\nx_train: {} \ny_train:

{}".format(x_train.shape, y_train.shape))

print("\nTesting sets:\nx_test: {} \ny_test:

{}".format(x_test.shape, y_test.shape))

print("\nValidation sets:\nx_validate: {} \ny_validate: {}".

format(x_validate.shape, y_validate.shape))

Refer to Figure 4-7 to see the output shapes.

Figure 4-6. Creating the respective x and y splits of the training,
testing, and validation sets by concatenating the respective normal
and anomaly sets. You drop Class from the x-sets because it would be
cheating otherwise to give it the label directly. You are trying to get the
model to learn the labels by reading the x-data, not learn how to read
the Class column in the x-data

Chapter 4 IntroduCtIon to MLFLow

135

Finally, you scale your data using scikit-learn’s standard scaler:

scaler = StandardScaler()

scaler.fit(pd.concat((normal, anomaly)).drop("Class", axis=1))

x_train = scaler.transform(x_train)

x_test = scaler.transform(x_test)

x_validate = scaler.transform(x_validate)

Refer to Figure 4-8.

Figure 4-7. Printing out the shapes of the training, testing, and
validation sets

Figure 4-8. Fitting the scaler on the superset of normal and anomaly
points after dropping Class to scale the x-sets

Chapter 4 IntroduCtIon to MLFLow

136

 Training and Evaluating with MLFlow
All that is left now is to train and evaluate your model. We will showcase

validation with MLFlow functionality in a bit, but first let’s define the

train and test functions to organize the code. This is also where you start

integrating MLFlow into your code. Here is the train function:

def train(sk_model, x_train, y_train):

 sk_model = sk_model.fit(x_train, y_train)

 train_acc = sk_model.score(x_train, y_train)

 mlflow.log_metric("train_acc", train_acc)

 print(f"Train Accuracy: {train_acc:.3%}")

Refer to Figure 4-9 to see this code in a cell.

You may have noticed the first of the new code with this line:

mlflow.log_metric("train_acc", train_acc)

You create a new metric here specifically for the training accuracy so

that you can keep track of this metric. Furthermore, you are telling MLFlow

to log this metric, so that MLFlow will keep track of this value in each run.

When you log multiple runs, you can compare this metric across each

of those runs so that you can pick a model with the best AUC score for

example.

Figure 4-9. Defining the train function to better organize the code.
Additionally, you are defining a training accuracy metric that will be
logged by MLFlow

Chapter 4 IntroduCtIon to MLFLow

137

Let’s now move on to the evaluate function:

def evaluate(sk_model, x_test, y_test):

 eval_acc = sk_model.score(x_test, y_test)

 preds = sk_model.predict(x_test)

 auc_score = roc_auc_score(y_test, preds)

 mlflow.log_metric("eval_acc", eval_acc)

 mlflow.log_metric("auc_score", auc_score)

 print(f"Auc Score: {auc_score:.3%}")

 print(f"Eval Accuracy: {eval_acc:.3%}")

 roc_plot = plot_roc_curve(sk_model, x_test, y_test,

name='Scikit-learn ROC Curve')

 plt.savefig("sklearn_roc_plot.png")

 plt.show()

 plt.clf()

 conf_matrix = confusion_matrix(y_test, preds)

 ax = sns.heatmap(conf_matrix, annot=True,fmt='g')

 ax.invert_xaxis()

 ax.invert_yaxis()

 plt.ylabel('Actual')

 plt.xlabel('Predicted')

 plt.title("Confusion Matrix")

 plt.savefig("sklearn_conf_matrix.png")

 mlflow.log_artifact("sklearn_roc_plot.png")

 mlflow.log_artifact("sklearn_conf_matrix.png")

Refer to Figure 4-10 to see the above code in a cell.

Chapter 4 IntroduCtIon to MLFLow

138

Once again, you have told MLFlow to log two more metrics: the AUC

score and the accuracy on the test set. You do so with these lines of code:

mlflow.log_metric("eval_acc", eval_acc)

mlflow.log_metric("auc_score", auc_score)

Furthermore, you can also tell MLFlow to save the plots generated by

matplotlib and by seaborn. With this, you can look at each of the graphs for

each training run and do so in a highly organized manner. You must first

save these plots, which you do in the same directory. Then, you must tell

MLFlow to grab the artifacts to log them like so:

mlflow.log_artifact("sklearn_roc_plot.png")

mlflow.log_artifact("sklearn_conf_matrix.png")

Make sure that they have the same names as the graphs you saved.

Figure 4-10. A function to calculate the evaluation metrics for the
AUC score and accuracy. Plots for the confusion matrix and the ROC
curve are generated, and both the metrics and the graphs are logged
to MLFlow

Chapter 4 IntroduCtIon to MLFLow

139

 Logging and Viewing MLFlow Runs
Finally, let’s run the code that actually sets the experiment name, starts the

MLFlow run, and executes all this code:

sk_model = LogisticRegression(random_state=None,

max_iter=400, solver='newton-cg')

mlflow.set_experiment("scikit_learn_experiment")

with mlflow.start_run():

 train(sk_model, x_train, y_train)

 evaluate(sk_model, x_test, y_test)

 mlflow.sklearn.log_model(sk_model, "log_reg_model")

 print("Model run: ", mlflow.active_run().info.run_uuid)

mlflow.end_run()

Notice the new lines of MLFlow code. We will go through them one by

one.

First, let’s begin with what appears to set the experiment name:

mlflow.set_experiment("scikit_learn_experiment")

What this does is that it puts the run under whatever experiment name

you pass in as a parameter. If that name does not exist, MLFlow will create

a new one under that name and put the run there.

with mlflow.start_run():

 ...

 ...

This line of code allows you to chunk all of your code under the context

of one MLFlow run. This ensures that there are no discrepancies between

where your metrics are being logged, and that it doesn’t create two

different runs when you mean it to log everything for the same run.

mlflow.sklearn.log_model(sk_model, "log_reg_model")

Chapter 4 IntroduCtIon to MLFLow

140

This line of code is the general convention to use when you’re logging a

model. The parameters, in order, are the model you’re saving and then the

name you’re setting for the model when saving. In this case, you are saving

your logistic regression model with the name log_reg_model in this run.

As you will see later, most other frameworks follow the same style

when saving the model. There are a couple exceptions, but we will cover

this when the time comes. In this case, you are calling mlflow.sklearn,

but if you wanted to log a PySpark model, you would do mlflow.spark.

Basically, the framework the model was built in must match the

framework module of MLFlow when logging the model. It is possible

to create a custom “model” in MLFlow and log this as well, something

that is covered in the documentation. You can use this custom model to

then specify how you want the prediction function to work. If you’d like

to process the data some more before making predictions, for example,

MLFlow allows you to specify this extra functionality through the use of the

MLFlow PyFunc module. Refer to the documentation, which you can find

here: www.mlflow.org/docs/latest/models.html#model-customization.

print("Model run: ", mlflow.active_run().info.run_uuid)

This line of code essentially gets the current run that the model and

metrics are being logged to and prints it out. This makes it handy if you

want to retrieve the run directly from the notebook itself instead of going to

the UI to do so.

mlflow.end_run()

Finally, this tells MLFlow to end the current run. In cases where there

is an error in the MLFlow start run code block, and the run does not

terminate, do this to forcibly end the current run. Basically, it is there to

ensure that MLFlow stops the run after you executed all the code relevant

to the current run.

Moving on, refer to Figure 4-11 to see the full output of the code.

Chapter 4 IntroduCtIon to MLFLow

http://www.mlflow.org/docs/latest/models.html#model-customization

141

You can see that MLFlow automatically generates a new experiment

if it does not already exist, so you can create a new experiment directly

from the code. You can also see that the rest of the code basically outputs

as usual, except it also prints the run ID of the current MLFlow run just as

you specified. You will use this later when you select the specific model

that you want to serve. What you will do next is open up the UI MLFlow

provides where you can actually look at all the experiments and model

runs. Finally, you also log the model itself as an artifact with MLFlow.

MLFlow will modularize this code so that it will work with the code

provided by MLFlow to support implementations of a variety of MLOps

principles.

Figure 4-11. The output of running the MLFlow experiment. Under
an MLFlow run context, you are training the model, outputting the
graphs from the evaluation function, and logging all the metrics
including the model to this run

Chapter 4 IntroduCtIon to MLFLow

142

The following was done on Windows 10, but it should be the same

on MacOS or Linux. First, open command prompt/powershell/terminal.

Then, you must go into the directory that contains this notebook file. List

the contents of the directory (or view this in file explorer/within Jupyter

itself) and you will notice a new directory named mlruns.

If you installed all of your packages in Conda, make sure you’ve

activated the Conda environment before running this.

What you want to do now is to make sure your command prompt,

powershell, or terminal is in the same directory that contains mlruns, and

type the following:

mlflow ui -p 1234

The command mlflow ui hosts the MLFlow UI locally on the default

port of 5000. However, the options -p 1234 tell it that you want to host it

specifically on the port 1234.

If it all goes well, and it can take several seconds, you should see

something like Figure 4-12.

Figure 4-12. Making sure that the current directory contains the
folder mlruns and calling the command to start the UI. If successful,
it should state “Serving on http:// … :1234.” We have docker on our
system, hence why yours might say localhost instead of kubernetes.
docker.internal

Chapter 4 IntroduCtIon to MLFLow

143

Now, open a browser and type in http://localhost:1234 or

http://127.0.0.1:1234. Both should take you to the same MLFlow UI. If

you used a different port, it should generally look like this:

http://localhost:PORT_NUMBER or http://127.0.0.1:PORT_NUMBER,

where you replace PORT_NUMBER with the one you used. If you did not

specify a port parameter, then the default port used by MLFlow is 5000.

Regardless, if it works correctly, you should see something like

Figure 4-13 once you visit that URL.

Notice that there is now an experiment titled scikit_learn_experiment.

Click it, and you should see something like Figure 4-14.

Figure 4-13. Your MLFlow UI should look something like this. To
the left are the experiments. Notice that there is an experiment titled
Default and one titled scitkit_learn_experiment, which is the one you
just created

Chapter 4 IntroduCtIon to MLFLow

144

You should see something like Figure 4-15.

Figure 4-14. This is what your experiment, scikit_learn_experiment,
should look like once you click it. Notice that there is one run here,
which is what was just created

You can see the run that just completed, along with the metrics you

logged. Click it so that you can explore it. The run that was just completed

should have a green check mark beside the time stamp when it finished if

everything went well, which you can see is the case in Figure 4-14.

Chapter 4 IntroduCtIon to MLFLow

145

Figure 4-16. The logged artifacts of this run. Notice that the graphs
appear to be logged as well as the model itself, which was named
log_reg_model when you were logging it in the code

Figure 4-15. This is the run that was just completed. Notice that the
metrics you logged show up here

You should now see the details of this run much more clearly. Here,

you can see all of the parameters and metrics that were logged. Keep

scrolling down and you should be able to see all of the logged artifacts.

Refer to Figure 4-16.

Chapter 4 IntroduCtIon to MLFLow

146

Here, you can see the model that has been logged, along with the two

graphs that you logged as artifacts. Click the graphs and you should see

something like Figure 4-17.

Amazing, right? Everything is extremely organized, and you don’t

have to worry about creating multiple folders for everything and staying

organized. Simply tell MLFlow what to do and it will log all the information

relevant to this run that you need. You can log your deep learning model’s

hyperparameters for learning rate, number of epochs, specific optimizer

parameters like beta1 and beta2 for the Adam optimizer, and so on.

You can even log graphs, as you can see in Figure 4-17, along with the

models themselves. With MLFlow, you can stay highly organized with

your experiments even if you don’t necessarily need the deployment

capabilities to the cloud services.

Let’s now try logging a few more runs. Rerun the cell in Figure 4-11

a couple times to completion and go back to the MLFlow UI. Make sure

you have selected the experiment named scikit_learn_experiment. You

should see something like Figure 4-18.

Figure 4-17. Inspecting the graph of the confusion matrix that you
saved. Feel free to click the other graph as well, which is of the ROC
plot

Chapter 4 IntroduCtIon to MLFLow

147

Let’s compare the metrics you’ve logged for these runs. Select at least

two runs, and ensure your UI looks somewhat like Figure 4-19. We selected

three runs.

Figure 4-19. This is what your UI should look like after selecting
several runs. Make sure to select at least two so that there is something
to compare. Also notice that the button named Compare turns solid

Figure 4-18. Revisiting your experiment after logging some runs in.
The runs are logged in ascending order by timestamp, so the latest
runs are on top

Chapter 4 IntroduCtIon to MLFLow

148

After clicking Compare, you should see something like Figure 4-20.

Here, you can directly compare the relevant parameters and metrics

between the runs you have chosen. You have the option of viewing a scatter

plot, a contour plot, or a parallel coordinates plot. Feel free to play around

with the metrics and with the plots. You can even save these plots if you wish.

Note that since these runs have the exact same metrics, there will only

appear to be one point plotted.

 Loading a Logged Model

Next, let’s briefly look at how you can load the models logged by MLFlow.

Go back to the experiment and click a run. Note the run ID at the top and

copy it. Then, go back to the notebook, and run the following. Note that

there is a placeholder for the run ID:

loaded_model = mlflow.sklearn.load_model

("runs:/YOUR_RUNID_HERE/log_reg_model")

Figure 4-20. The UI after selecting three runs to compare. As you can
see, you can look at all of the metrics at once. There is also a graphing
tool that lets you compare these values graphically, though you won’t
see proper graphs as every value is the same across the runs

Chapter 4 IntroduCtIon to MLFLow

149

To better understand what this path is, let’s split it up into three

sections: the format (runs:/), the run ID (YOUR_RUNID_HERE), and the

model name that you used when you logged it (log_reg_model).

In our case, our run ID was 3862eb3bd89b43e8ace610c521d974e6,

so our cell looks like Figure 4-21. Ensure your code looks somewhat like

Figure 4-21, with the only difference being the run ID that you chose since

it will be different from ours.

This is now the same model that you had when MLFlow logged it in the

first place. With this, you can call something like .score() and see that it’s

the same as during training:

loaded_model.score(x_test, y_test)

This outputs the accuracy as the model is evaluated on the test set. If

this truly is the same model, then the accuracy should match what was

output earlier during the evaluation portion of the model run.

Refer to Figure 4-22 to see the output.

As you can see, this value matches the evaluation accuracy from

Figure 4-11.

Figure 4-22. This is the evaluation accuracy of the loaded model
after evaluation on the test sets. If you compare this with Figure 4- 11,
you can see that the numbers more or less match, disregarding
rounding

Figure 4-21. The code to load a model that we logged using the
specific run ID we logged it in along with the model’s name we used
when we logged it

Chapter 4 IntroduCtIon to MLFLow

150

Now you know how to load a model from a specific MLFlow run.

With that, you’ve seen some of the functionality that MLFlow provides

and how it can help in keeping your prototyping experiments much

more organized. As you will see shortly, this entire pipeline that you just

explored is pretty much all you need to recreate the train, test, validate

pipeline that you saw earlier. Before you move on to looking at how you

can use MLFlow with other frameworks, let’s go over how you can use

MLFlow functionality to vastly improve the model validation process.

 Model Validation (Parameter Tuning)
with MLFlow
 Parameter Tuning – Broad Search

Just like in Chapter 2, you will use a script to help with model validation

with respect to hyperparameter tuning. The tuning script will largely

remain the same, except for a few modifications where MLFlow code has

been added in.

Run the following code to set the range of anomaly weights and to set

the number of folds:

anomaly_weights = [1, 5, 10, 15]

num_folds = 5

kfold = KFold(n_splits=num_folds, shuffle=True,

random_state=2020)

The code should look like Figure 4-23.

Figure 4-23. The code to determine the list of anomaly weights to
perform validation over, to determine the number of folds, and to
initialize the KFolds generator based on the number of folds

Chapter 4 IntroduCtIon to MLFLow

151

Now, paste the following. This is the first half of the entire function:

mlflow.set_experiment("sklearn_creditcard_broad_search")
logs = []
for f in range(len(anomaly_weights)):
 fold = 1
 accuracies = []
 auc_scores= []
 for train, test in kfold.split(x_validate, y_validate):
 with mlflow.start_run():
 weight = anomaly_weights[f]
 mlflow.log_param("anomaly_weight", weight)

 class_weights= {
 0: 1,
 1: weight
 }
 sk_model = LogisticRegression(random_state=None,
 max_iter=400,
 solver='newton-cg',
 class_weight=class_

weights).fit
(x_validate[train],
y_validate[train])

 for h in range(40): print('-', end="")
 print(f"\nfold {fold}\nAnomaly Weight: {weight}")

 train_acc = sk_model.score(x_validate[train],
y_validate[train])

 mlflow.log_metric("train_acc", train_acc)

 eval_acc = sk_model.score(x_validate[test],
y_validate[test])

 preds = sk_model.predict(x_validate[test])

 mlflow.log_metric("eval_acc", eval_acc)

Chapter 4 IntroduCtIon to MLFLow

152

Here is some more of the code. Make sure this all aligns with the code

from above.

 try:

 auc_score = roc_auc_score(y_validate[test], preds)

 except:

 auc_score = -1

 mlflow.log_metric("auc_score", auc_score)

 print("AUC: {}\neval_acc: {}".format(auc_score,

eval_acc))

 accuracies.append(eval_acc)

 auc_scores.append(auc_score)

 log = [sk_model, x_validate[test],

y_validate[test], preds]

 logs.append(log)

 mlflow.sklearn.log_model(sk_model,

f"anom_weight_{weight}_fold_{fold}")

 fold = fold + 1

 mlflow.end_run()

 print("\nAverages: ")

 print("Accuracy: ", np.mean(accuracies))

 print("AUC: ", np.mean(auc_scores))

 print("Best: ")

 print("Accuracy: ", np.max(accuracies))

 print("AUC: ", np.max(auc_scores))

First, let’s look at what that giant chunk of code looks like in a cell.

Ensure your code and alignment matches Figure 4-24.

Chapter 4 IntroduCtIon to MLFLow

153

Now, let’s run this script. It should log the parameter for the anomaly

weight and all of the metrics that you specified for every fold generated.

When the script finishes, go to your MLFlow UI and switch the experiment

to sklearn_creditcard_broad_search to see all the runs you just logged.

You should see something like in Figure 4-25.

Figure 4-24. The entire validation script from Chapter 2 with some
MLFlow code additions to log everything during the validation
process

Chapter 4 IntroduCtIon to MLFLow

154

Let’s try sorting this by the AUC score to find the best parameters for

the AUC. In the metrics column, click auc_score.

The action should result in something that looks like Figure 4-26.

Figure 4-25. The output you should see after the validation
experiment has finished. Make sure you select the experiment titled
sklearn_creditcard_broad_search

Chapter 4 IntroduCtIon to MLFLow

155

You want to sort the columns in descending order, so click it again to

see something that looks like Figure 4-27.

Figure 4-26. The values are all sorted by auc_score in descending
order. We’ve highlighted this column so that you can more easily spot
the difference between this figure and Figure 4-25. As you can see,
the AUC scores are in ascending order. You want to see the best AUC
scores, so you must sort in descending order

Chapter 4 IntroduCtIon to MLFLow

156

Perhaps you don’t really care about anything but the absolute best

scores. Say that you are targeting AUC scores that are at least 0.90. How

would you go about filtering everything? Well, the UI provides a search bar

that performs a search based on the SQL WHERE clause. So, to filter your

output, type the following and click Search:

metrics."auc_score" >= 0.90

You should see something like Figure 4-28. If you have copied and

pasted the line of code, be sure to delete it and put in the quotation marks

again if you encounter any errors about the quotation marks.

Figure 4-27. The values are now sorted by AUC score in descending
order. Now you can see the runs that produced the best AUC scores
along with the specific anomaly weight it had in that run

Chapter 4 IntroduCtIon to MLFLow

157

Notice that we put "auc_score" in quotation marks. This is for cases

where the metric name that you’ve logged contains characters like a dash

where it might not recognize the name if you typed it out like so:

metrics.auc-score

The proper convention for a metric logged as "auc-score" would be to

filter it like so:

metrics."auc-score" >= 0.90

Now let’s say that of these scores, you want to see the scores for

anomaly weights of 5 only. It doesn’t appear that there are any results with

the anomaly weight of 1, so we will start with 5. For that, let’s type and

search the following:

metrics."auc_score" >= 0.90 AND parameters.anomaly_weight = "5"

You should see something like Figure 4-29.

Figure 4-28. The results of filtering all of the AUC scores to be above
0.90. As you can see, only a handful of runs produced AUC scores that
are at least 0.90

Chapter 4 IntroduCtIon to MLFLow

158

You put the 5 in quotation marks because the parameters seem to be

logged as string values, whereas the metrics are logged as floats.

From this output, it seems that only two of the five folds with the

anomaly weight set to 5 had an AUC score above 0.90. Let’s quickly search

over the other parameters and check how many folds had an AUC score

above 0.90 as well.

For filtering the anomaly weight by 10, refer to Figure 4-30.

So, three of the five folds with the anomaly weight set to 10 had an AUC

score above 0.90.

Let’s check 15 now. Refer to Figure 4-31.

Figure 4-29. Filtering the runs to have only runs with the anomaly
weight set to 5 and to have an AUC score above 0.90

Figure 4-30. Three runs for an anomaly weight of 10 also met your
criteria for minimum AUC score

Chapter 4 IntroduCtIon to MLFLow

159

You see similar results with 15.

What if you tighten the AUC score requirement to be a minimum of

0.95? Let’s check the runs for a minimum AUC of 0.95 and with an anomaly

weight of 5. Refer to Figure 4-32.

So, it seems that only one fold reached an AUC score above 0.95 when

the anomaly weight was 5.

What do the results look like for an anomaly weight of 10? Refer to

Figure 4-33.

Figure 4-31. You can see that with an anomaly weight of 15, there
seems to be two folds that had an AUC score above 0.95

Figure 4-32. This time, you see that only one of the folds for the runs
with anomaly weight set to 5 has an AUC score above 0.95

Chapter 4 IntroduCtIon to MLFLow

160

Let’s check the runs with an anomaly weight of 15. Refer to Figure 4-34.

It seems that for an anomaly weight of 15, only one run has achieved

an AUC score above 0.95. It seems that you can’t look at how you can

narrow the scope without looking at the rest of the AUC scores.

It appears to be the case that the best AUC scores seem to be between 5

and 15.

Alright, so what if the higher anomaly weights were more consistent

in their AUC scores, and the smaller anomaly weight runs achieving the

highest AUC scores were just flukes? To see how each anomaly weight

Figure 4-33. With an anomaly weight of 10, only one run has an
AUC score above 0.95

Figure 4-34. With an anomaly weight of 15, only one run has
achieved an AUC score above 0.95. From these results, you cannot
really infer which weight setting is the best, so you have to narrow the
scope of your hyperparameter search. As far as you know, you could
have missed the best setting, and it could be somewhere in between 5
and 10 or 10 and 15

Chapter 4 IntroduCtIon to MLFLow

161

setting did, first remove the query statement, and click Search again. Next,

make sure that the AUC scores are in descending order. Once you’re done,

refer to Figure 4-35 and verify that your output looks similar.

Using the following code, let’s filter over all of the values for anomaly

weights and check what the AUC scores look like, replacing 1 with 5, 10,

and 15.

parameters.anomaly_weight = "1"

Refer to Figure 4-36 to see the results of filtering by an anomaly weight

of 1.

Figure 4-35. Ordering the runs by descending AUC score

Chapter 4 IntroduCtIon to MLFLow

162

None of the scores have gone above 0.9, so you can automatically rule

out this anomaly weight setting. If you go back to your script, you can see

that the average AUC was around 0.8437.

Let’s look at the runs with an anomaly weight of 5. Refer to Figure 4-37.

The scores have improved noticeably. If you go back to the original

script’s output, you can see that the average AUC score is now 0.9116.

The rest of the anomaly weights all achieved the highest AUC score of

around 0.975, so the average AUC is a better metric to help you narrow the

range.

Figure 4-37. Looking at the AUC scores of the runs with anomaly
weight of 5 in descending order. You can see a noticeable increase in
the average AUC score when compared to an anomaly weight of 1

Figure 4-36. Looking at the AUC scores of the runs with an anomaly
weight of 1 in descending order

Chapter 4 IntroduCtIon to MLFLow

163

Let’s now look at the runs with an anomaly weight of 10. Refer to

Figure 4-38.

These scores seem even better than the ones for an anomaly weight of

5. This time, the average AUC score is around 0.9215.

Finally, let’s look at the scores for an anomaly weight of 15. Refer to

Figure 4-39 to see the results of filtering by an anomaly weight of 15.

Figure 4-38. Looking at the AUC scores of the runs with an anomaly
weight of 10 in descending order. These scores seem even better

Figure 4-39. Looking at the AUC scores of the runs with an anomaly
weight of 15 in descending order. The scores are very similar, but
the average is ever so slightly worse, so the true range seems to be
somewhere in between 10 and 15

Chapter 4 IntroduCtIon to MLFLow

164

The scores are very similar to each other, and indeed, the average AUC

score is now 0.9212.

Based on these results, you can see that there seems to be an increase

from 5 to 10, but a slight decrease from 10 to 15. From this data, the

ideal range seems to be somewhere in between 10 and 15, but again, the

decrease in average AUC from 10 to 15 is essentially negligible. And so,

what if it’s potentially beyond 15, and you started out with the wrong range

to search over?

From the results of this validation experiment, it seems that you

haven’t found a definite range of values that you know for sure you can

focus on. And so, you must expand your range even more just to see if you

can get better results with higher anomaly weights.

Looking at the distribution of data and how heavily the normal points

outnumber the anomalies, you can use your intuition to help guide your

hyperparameter search and expand the range far more.

Now that you know this, let’s try expanding the range far more.

 Parameter Tuning – Guided Search

The best overall performances were achieved by anomaly weights 10 and

15, but it seems to be on an upward trend the higher up you go with the

anomaly weight.

Now that you know this, let’s try another validation run with a broader

range of anomaly weights to try.

Go back to the cell (or copy-paste it into a new cell) in Figure 4-23 and

change the anomaly weights so that they look like the following:

anomaly_weights = [10, 50, 100, 150, 200]

You should see something like Figure 4-40.

Chapter 4 IntroduCtIon to MLFLow

165

The validation script itself should be the same, so if you simply

replaced the anomaly weights in the original cell, don’t run the validation
script yet! Let’s create a new experiment so that you don’t clutter the

original tuning experiment with these new runs.

Modify the following line in the old validation script so that it goes

from

mlflow.set_experiment("sklearn_creditcard_broad_search")

to

mlflow.set_experiment("sklearn_creditcard_guided_search")

You should see something like Figure 4-41.

Figure 4-40. Setting a narrow range of values to search over during
the second validation run

Figure 4-41. Setting a new experiment called sklearn_creditcard_
guided_search so that the results of this second validation experiment
are stored separately

Now you can run this code. Once it finishes, go back to the UI, refresh

it, and select the new experiment named sklearn_creditcard_guided_

search. You should see something like Figure 4-42.

Chapter 4 IntroduCtIon to MLFLow

166

The whole point of broadening the range of anomaly weights that

you are performing the tuning experiment on is to help you understand

where the best hyperparameter range may lie. You did not know this

initially, so you picked a range that was too small to help you discover the

best value. Now that you do know, you have expanded your search range

considerably.

From the results of this experiment, you can hopefully narrow your

range a lot more and repeat the experiment with a massively reduced

range and arrive at the correct hyperparameter setting.

You will now filter out each of the values by each unique anomaly

weight (10, 50, 100, 150, and 200) to get an idea of how the runs with that

setting performed.

Make sure you’re sorting AUC scores in descending order, type the

following query, and search:

parameters.anomaly_weight = "10"

You should see something like Figure 4-43.

Figure 4-42. The results of the second validation experiment

Chapter 4 IntroduCtIon to MLFLow

167

The average AUC score as displayed by the validation script is around

0.9215. Of course, this is the same result as from earlier.

Let’s see how the scores look for an anomaly weight of 50. Refer to

Figure 4-44.

There appears to be a minute difference in the range of AUC scores

already. Looking at the script, you can see that the average AUC is around

0.9248, so there appears to be a small increase in the AUC score.

Let’s keep going and check the results for the anomaly weight of 100.

Refer to Figure 4-45.

Figure 4-43. Filtering the runs by anomaly weight of 10 and setting
the AUC score to display in descending order

Figure 4-44. Filtering the runs by an anomaly weight of 50 and
setting the AUC score to display in descending order. It seems there’s a
slight difference in values

Chapter 4 IntroduCtIon to MLFLow

168

The average this time appears to be 0.9327. Despite the massive

increase in weight, the average AUC score did not go up that high.

However, notice that the first result with an AUC score of 0.995 has

appeared. The best AUC score up until the anomaly weight of 50 was 0.975,

but this anomaly weight setting has broken past that.

Let’s keep going and see if it increases with an anomaly weight setting

of 150. Refer to Figure 4-46A.

Figure 4-45. Filtering the runs by an anomaly weight of 100 and
setting the AUC score to display in descending order

Figure 4-46A. Filtering the runs by an anomaly weight of 150 and
setting the AUC score to display in descending order

Chapter 4 IntroduCtIon to MLFLow

169

The AUC scores overall seem to be a bit higher. Indeed, the average

AUC score is now 0.9365, so there was an increase. Finally, let’s check the

AUC scores for an anomaly weight setting of 200. Refer to Figure 4-46B.

The new average AUC now is 0.9396, so this anomaly weight setting

seems even better.

In fact, you still weren’t able to come to a conclusion about an optimal

range, since the AUC scores keep increasing as you set higher anomaly

weights.

So, from this, you know that the best hyperparameter setting is

somewhere above 200. You simply shift the range of the scope to start at

200 and search over a slightly different area, and once you have found a

good range of values to search over (eventually the AUC scores will start

trending down as you increase the anomaly weight), you can narrow the

focus and start searching again.

After a certain amount of precision with the parameter value, you start

to see diminishing returns where the added effort only produces negligible

improvements in performance, but you will likely encounter this as you

start getting deeper into the decimal values.

Figure 4-46B. Filtering the runs by an anomaly weight of 200 and
setting the AUC score to display in descending order

Chapter 4 IntroduCtIon to MLFLow

170

Hopefully now you understand more about how you can integrate

MLFlow into the model training, testing, and validation pipeline using

scikit-learn. You also looked at how to use the UI for basic comparisons,

along with how you might perform hyperparameter tuning more easily

using MLFlow.

A quick note to make is that if you’d like to perform more complicated

searches over multiple metrics or parameters, MLFlow provides

functionality through the API to let you do so via SQL searches within the

code, letting you order by multiple columns, for example.

MLFlow also provides support for logging metrics, parameters,

artifacts, and even models for other frameworks in their documentation.

We will now take a look at how to integrate MLFlow with TensorFlow 2.0+/

Keras, PyTorch, and PySpark.

 MLFlow and Other Frameworks
 MLFlow with TensorFlow 2.0 (Keras)
MLFlow provides easy integration with TensorFlow 2.0+ (any version of

TensorFlow 2.0 and above). To see how, let’s go over a very basic example

of a handwritten digit classifier model on the MNIST dataset. We will be

using the built-in Keras module to keep things simple for demonstration

purposes. MLFlow supports TensorFlow 1.12 at a minimum, so this code

should run as long as you have at least TensorFlow 1.12.

We will assume a basic level of familiarity with TensorFlow 2, so

we won’t go into much depth about what the functions, model layers,

optimizers, and loss functions mean.

Before we begin, here are the versions of TensorFlow, CUDA, and

CuDNN that we used. Keep in mind that we ran this using the GPU version

Chapter 4 IntroduCtIon to MLFLow

171

of TensorFlow (the package is called tensorflow-gpu), although you should
be able to run this without a GPU at the cost of it taking longer:

• TensorFlow (GPU version) – 2.3.0

• CUDA – 10.1

• CuDNN – v7.6.5.32 for CUDA 10.1

• Sklearn – 0.22.2.post1

• MLFlow – 1.10.0

 Data Processing
Here is the code to import the necessary modules and print out their
versions:

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv2D, Flatten
from tensorflow.keras.datasets import mnist

import numpy as np

import matplotlib
import matplotlib.pyplot as plt

import sklearn
from sklearn.metrics import roc_auc_score

import mlflow
import mlflow.tensorflow

print("TensorFlow: {}".format(tf.__version__))
print("Scikit-Learn: {}".format(sklearn.__version__))
print("Numpy: {}".format(np.__version__))
print("MLFlow: {}".format(mlflow.__version__))

print("Matplotlib: {}".format(matplotlib.__version__))

Chapter 4 IntroduCtIon to MLFLow

172

You should see something like Figure 4-47.

Let’s now load the data:

(x_train, y_train), (x_test, y_test) = mnist.load_data()

Keras, and by extension TensorFlow, provides the MNIST handwritten

digit dataset for you, so all you need to do to load the data is call the

function, like in Figure 4-48.

Refer to Figure 4-48 to see the code in a cell.

You can even see what one of these images looks like. Run the

following:

plt.imshow(x_train[0], cmap='gray'), print("Class: ", y_train[0])

You should see something like Figure 4-49.

Figure 4-47. Importing the necessary modules and printing their
versions

Figure 4-48. Defining x_train, y_train, x_test, and y_test

Chapter 4 IntroduCtIon to MLFLow

173

Also notice that you printed out the class label associated with this

specific image. The labels are all integers between 0 and 9, each associated

with an image that shows a handwritten digit from 0 to 9.

Since 2D convolutional layers in TensorFlow/Keras expect four

dimensions in the format of (m, h, w, c) where m stands for the number of

samples in the dataset, h and w stand for the height and width, respectively,

and c stands for the number of channels (three if it’s an RGB color image

for example), you need to reshape your data so that it conforms to these

specifications. Your images are all black and white, so they technically have

a channel of one. And so, you must reshape them like so:

x_train = x_train.reshape(x_train.shape[0], x_train.shape[1],

x_train.shape[2], 1)

x_test = x_test.reshape(x_test.shape[0], x_test.shape[1],

x_test.shape[2], 1)

y_train = tf.keras.utils.to_categorical(y_train)

y_test = tf.keras.utils.to_categorical(y_test)

Refer to Figure 4-50 to see that code in a cell.

Figure 4-49. Looking at what one of the data samples looks like
using matplotlib. You also printed out the class label associated with
this sample, which was 5

Chapter 4 IntroduCtIon to MLFLow

174

You converted the y sets by calling a function called

to_categorical(). This converts each sample from an integer value of

say 2 or 4 corresponding to the digit represented by the x samples into a

one-hot encoded vector.

Samples in this format are now 0 vectors with a num_classes number

of digits. In other words, these vectors all have a length matching the total

number of classes. Whatever value the label was is now the index of the

value 1. And so, if the label is 1, the value at the index of 1 in this vector will

be one, and everything else is a 0.

This may be a little confusing, so refer to Figure 4-51 to see what the

one-hot encoded label looks like for a digit representing 5.

Figure 4-50. Reshaping the data to include one channel, conforming
with the specifications of the convolutional layers. Additionally, the y
sets are being converted to one-hot encoded formats

Figure 4-51. The new output of the one-hot encoded label
representing a value of 5. Notice that the value at index 5 is now 1

As you can see, the index of the 1 is 5, corresponding to the first

x_train example you looked at earlier, which was the digit 5.

Now, let’s print out the shapes:

print("Shapes")

print("x_train: {}\ny_train: {}".format(x_train.shape,

y_train.shape))

print("x_test: {}\ny_test: {}".format(x_test.shape,

y_test.shape))

You should now see something like Figure 4-52.

Chapter 4 IntroduCtIon to MLFLow

175

 MLFlow Run – Training and Evaluating

Let’s move on to the creation of your model. You will be using the

Sequential method of model creation. The model will be quite simple,

consisting of a couple 2D convolutional layers that feed into three dense

layers. Run the following:

model = Sequential()

model.add(Conv2D(filters=16, kernel_size=3, strides=2,

padding='same', input_shape=(28, 28, 1), activation="relu"))

model.add(Conv2D(filters=8, kernel_size=3, strides=2,

padding='same', input_shape=(28, 28, 1), activation="relu"))

model.add(Flatten())

model.add(Dense(30, activation="relu"))

model.add(Dense(20, activation="relu"))

model.add(Dense(10, activation="softmax"))

model.summary()

You should see something like Figure 4-53.

Figure 4-52. Printing the output shapes of the processed data

Chapter 4 IntroduCtIon to MLFLow

176

Let’s now compile your model using the Adam optimizer and

categorical cross-entropy for your loss. For your metric, you will only be

using accuracy. Run the following:

model.compile(optimizer="Adam",

loss="categorical_crossentropy", metrics=["accuracy"])

You should see something like Figure 4-54.

Figure 4-53. Creating the model and outputting a summary of the
model’s architecture

Figure 4-54. Compiling your model, setting the optimizer to Adam
optimizer, setting the loss to categorical cross-entropy, and setting the
metric to be accuracy

Now you get to the part where you tell MLFlow to log this run. You

want all of the metrics to be logged to the same run, so you must tell

MLFlow specifically to run a block of code in the context of the same run.

To do so, you once again block your code using the following line:

with mlflow.start_run():

Chapter 4 IntroduCtIon to MLFLow

177

With that, run the following to set the experiment name, train the

model, get the evaluation metrics you need, and log them all to MLFlow:

mlflow.set_experiment("TF_Keras_MNIST")

with mlflow.start_run():

 mlflow.tensorflow.autolog()

 model.fit(x=x_train, y=y_train, batch_size=256, epochs=10)

 preds = model.predict(x_test)

 preds = np.round(preds)

 eval_acc = model.evaluate(x_test, y_test)[1]

 auc_score = roc_auc_score(y_test, preds)

 print("eval_acc: ", eval_acc)

 print("auc_score: ", auc_score)

 mlflow.tensorflow.mlflow.log_metric("eval_acc", eval_acc)

 mlflow.tensorflow.mlflow.log_metric("auc_score", auc_score)

mlflow.end_run()

Refer to Figure 4-55 to see the output. Ignore the warning messages.

They don’t hinder the training process or the performance of the model.

Chapter 4 IntroduCtIon to MLFLow

178

Another new line of code is the following:

mlflow.keras.autolog()

This basically tells MLFlow to log all the parameters and metrics

associated with the particular TensorFlow/Keras model. As you will see

shortly, MLFlow will log the hyperparameters, model metrics listed in

the compile() function, and even the model itself once the training has

finished.

Figure 4-55. Output of the MLFlow run and the training process. You
can also see that the metrics you calculated have been updated

Chapter 4 IntroduCtIon to MLFLow

179

 MLFlow UI – Checking Your Run

With that, let’s now open the MLFlow UI and check your run in MLFlow.

Make sure your terminal or command prompt is in the same directory

where the mlruns are stored. Usually, MLFlow saves all these runs in the

same directory of the Jupyter notebook.

Now that you’ve opened the UI, you should see something like

Figure 4-56.

Click the tab called TF_Keras_MNIST to see the results of the

experiment you just logged. You should see something like Figure 4-57.

Figure 4-56. The MLFlow UI after running the TensorFlow
experiment. Notice that there is a new experiment titled TF_Keras_
MNIST

Chapter 4 IntroduCtIon to MLFLow

180

As you can see, your run was just successfully logged. Next, click it to

explore all of the parameters, metrics, and artifacts that MLFlow logged.

You should see something like Figure 4-58.

Figure 4-57. Opening the experiment titled TF_Keras_MNIST. You
can see that it successfully logged a run

Figure 4-58. Looking at the specific run logged in the experiment.
As you can see, all the parameters and metrics were logged, even the
one you specified. It also shows you the duration and the status of the
run, so now you know how long it took to train the model as well as
whether or not it completed

Chapter 4 IntroduCtIon to MLFLow

181

MLFlow saved all of the hyperparameters used when creating the

model. This could be very useful for hyperparameter tuning on a validation

set, for example, where you are trying to tune many hyperparameters

at once. For example, you can definitely tune batch_size, epochs, or

something related to the Adam optimizer like opt_learning_rate,

opt_beta_1, or opt_beta_2.

As you can see in Figure 4-58, MLFlow saved the model metrics for

accuracy and loss as calculated during the training process. In addition,

MLFlow also saved the metrics that you defined.

Scroll down to artifacts and click model and then data. You should see

something like Figure 4-59.

Here, you can see that MLFlow also saved the model after the training

process finished. In fact, let’s briefly look at how you can load this model.

Make sure you go to the top and copy the run ID before doing this.

 Loading an MLFlow Model

With the run ID copied, head on over to the notebook and create a new

cell. Run the following code, but replace the run ID with yours:

loaded_model =

mlflow.keras.load_model("runs:/YOUR_RUN_ID/model")

Figure 4-59. Upon closer inspection of the artifacts, it seems MLFlow
has also logged the model itself

Chapter 4 IntroduCtIon to MLFLow

182

Your code should look similar to Figure 4-60. Our run was

ba423a8f28d24b67b8f703ca6be43fc2, so that’s what we replaced

YOUR_RUN_ID with.

You’ll notice that we did mlflow.keras instead of mlflow.tensorflow.

This is because this model is technically a Keras model, and so it conforms

to the specific load_model() code in the mlflow.keras module.

Run the following code to quickly calculate the same evaluation

metrics that you logged earlier:

eval_loss, eval_acc = loaded_model.evaluate(x_test, y_test)

preds = loaded_model.predict(x_test)

preds = np.round(preds)

eval_auc = roc_auc_score(y_test, preds)

print("Eval Loss:", eval_loss)

print("Eval Acc:", eval_acc)

print("Eval AUC:", eval_auc)

This just ensures that the model is the same and demonstrates that

you can use the model to make predictions. Refer to Figure 4-61 to see the

output.

Figure 4-60. Loading a logged model using a specific run. Notice that
we are doing mlflow.keras. This is because the model is technically a
Keras model

Chapter 4 IntroduCtIon to MLFLow

183

As you can see, this output matches the values from the output of

the run earlier. Additionally, this model is also functional and can make

predictions.

And with that, you now know how to integrate MLFlow into your

TensorFlow 2.0+ experiments. Again, MLFlow supports TensorFlow 1.12+,

which also contains the Keras submodule. This means that you should be

able to follow the same convention to log tf.keras module code as long as

you have TensorFlow 1.12+.

In practice, you are likely to have functions to build and compile the

model, functions to train the model, and functions to evaluate and perhaps

even validate the model. Just be sure to call all of them in the block with

mlflow.start_run(): so that MLFlow knows all of this is happening

within the same run.

Next, let’s look at how to integrate MLFlow with PyTorch.

 MLFlow with PyTorch
MLFlow also provides integration with PyTorch. While the process isn’t as

easy as with Keras or TensorFlow, integrating MLFlow into your existing

PyTorch code is quite simple. To see how to do so, we will be exploring a

simple convolutional neural network applied to the MNIST dataset once

again.

Figure 4-61. The output of the code block printing out the loss,
accuracy, and AUC score when the model was evaluated on the test
set. These three values match the corresponding values from the
output of the run earlier

Chapter 4 IntroduCtIon to MLFLow

184

Before we begin, here are the versions of the modules we are using,

including CUDA and CuDNN:

• Torch - 1.6.0

• Torchvision – 0.7.0

• CUDA – 10.1

• CuDNN – v7.6.5.32 for CUDA 10.1

• Sklearn – 0.22.2.post1

• MLFlow – 1.10.0

• numpy – 1.18.5

 Data Processing

Let’s get started. Here’s the code to import the necessary modules, print

out their versions, and set the device that PyTorch will use:

import torch

import torch.nn as nn

from torch.utils import data

import torchvision

import torchvision.datasets

import sklearn

from sklearn.metrics import roc_auc_score, accuracy_score

import numpy as np

import mlflow

import mlflow.pytorch

device = torch.device("cuda:0" if torch.cuda.is_available()

else "cpu")

Chapter 4 IntroduCtIon to MLFLow

185

print("PyTorch: {}".format(torch.__version__))

print("torchvision: {}".format(torchvision.__version__))

print("sklearn: {}".format(sklearn.__version__))

print("MLFlow: {}".format(mlflow.__version__))

print("Numpy: {}".format(np.__version__))

print("Device: ", device)

Refer to Figure 4-62 to see the output.

The line of code

device = torch.device("cuda:0" if torch.cuda.is_available()

else "cpu")

tells PyTorch which device to run the code on. If there is a GPU that CUDA

can connect to, it will use that instead. Otherwise, it will run everything

on the CPU. In our case, we have CUDA set up with our GPU, so Torch

displays “cuda:0” as seen in Figure 4-62.

Figure 4-62. Importing the necessary modules and printing the
versions of the modules

Chapter 4 IntroduCtIon to MLFLow

186

Next, you will define some basic hyperparameters:

batch_size = 256

num_classes = 10

learning_rate = 0.001

Refer to Figure 4-63 to see them in a cell.

Next, you will load in the MNIST dataset. Like Keras and TensorFlow,

PyTorch also provides example datasets. In this case, you are loading

MNIST:

train_set = torchvision.datasets.MNIST(root='./data',

train=True, download=True, transform=None)

test_set = torchvision.datasets.MNIST(root='./data',

train=False, download=True, transform=None)

Refer to Figure 4-64 to see this code in a cell.

You will now define your x_train, y_train, x_test, and y_test

datasets:

x_train, y_train = train_set.data, train_set.targets

x_test, y_test = test_set.data, test_set.targets

Refer to Figure 4-65.

Figure 4-63. Setting the hyperparameters relevant to the training of
the model

Figure 4-64. Defining the training and testing sets by loading the
data from PyTorch

Chapter 4 IntroduCtIon to MLFLow

187

In PyTorch, you want the data to be channels first. In other words,

the format of the data should be (m, c, h, w), where m stands for the

number of samples, c stands for the number of channels, h stands for the

height of the samples, and w stands for the width of the samples.

Notice that this is the “opposite” format of how Keras and TensorFlow

do it by default, which is channels last. In Keras and TensorFlow, you can

also do channels first, but you must specify that you are doing it this way.

Let’s reshape your x-sets:

x_train, y_train = train_set.data, train_set.targets

x_test, y_test = test_set.data, test_set.targets

Refer to Figure 4-66 to see this code in a cell.

Figure 4-65. Creating your x_train, y_train, x_test, and y_test data
sets from the training and testing sets

Figure 4-66. Reshaping the x-sets so the data is encoded in a
channels-first format

Figure 4-67. The output of the first sample in the y_train set. Note
that the numbers are not in a one-hot encoded format

Before you print out all the shapes, note that your y-sets are not in a

one-hot encoded format. Run the following:

y_train[0]

Refer to Figure 4-67.

Chapter 4 IntroduCtIon to MLFLow

188

Notice that this outputs a number, not a vector. You must convert

your y-sets into a one-hot encoded format. However, there isn’t a handy

function like keras.utils.to_categorical() you can just call, so you will

define one:

def to_one_hot(num_classes, labels):

 one_hot = torch.zeros(([labels.shape[0], num_classes]))

 for f in range(len(labels)):

 one_hot[f][labels[f]] = 1

 return one_hot

That being said, you can always call keras.utils.to_categorical():

and type-cast the resulting output to a PyTorch tensor.

Refer to Figure 4-68 to see this in a cell.

Now let’s convert your y-sets to be in a one-hot encoded format:

y_train = to_one_hot(num_classes, y_train)

y_test = to_one_hot(num_classes, y_test)

Refer to Figure 4-69 to see this code in a cell.

Figure 4-68. A custom function that converts the input called
“labels,” given the number of classes, into a one-hot encoded format
and returns it

Figure 4-69. Converting your y-sets into a one-hot encoded format
using your custom function

Chapter 4 IntroduCtIon to MLFLow

189

Let’s check what y_train looks like now:

y_train[0]

Refer to Figure 4-70.

As you can see, it is now in a one-hot encoded format. Now you can

proceed to checking the shapes of your data sets:

print("Shapes")

print("x_train: {}\ny_train: {}".format(x_train.shape,

y_train.shape))

print("x_test: {}\ny_test: {}".format(x_test.shape,

y_test.shape))

You should see something like Figure 4-71.

Figure 4-70. Checking the output of the first sample in y_train, you
now see that the tensor has been converted into a one-hot encoded
format

Figure 4-71. Printing the shapes of your training and testing sets. As
you can see, the x-sets are in a channels-first format, and the y-sets are
in a one-hot encoded format

Chapter 4 IntroduCtIon to MLFLow

190

 MLFlow Run – Training and Evaluating

Now, let’s define your model. A popular convention in PyTorch is to define

the model as a class since it allows you to much more easily use the GPU

while training. Instead of passing in every layer to the GPU, you can just

send in the model object directly.

Run the following code to define your model:

class model(nn.Module):

 def __init__(self):

 super(model, self).__init__()

 # IN 1x28x28 OUT 16x14x14

 self.conv1 = nn.Conv2d(in_channels=1, out_channels=16,

kernel_size=3, stride=2, padding=1, dilation=1)

 # IN 16x14x14 OUT 32x6x6

 self.conv2 = nn.Conv2d(in_channels=16, out_channels=32,

kernel_size=3, stride=2, padding=0, dilation=1)

 # IN 32x6x6 OUT 64x2x2

 self.conv3 = nn.Conv2d(in_channels=32, out_channels=64,

kernel_size=3, stride=2, padding=0, dilation=1)

 # IN 64x2x2 OUT 256

 self.flat1 = nn.Flatten()

 self.dense1 = nn.Linear(in_features=256,

out_features=128)

 self.dense2 = nn.Linear(in_features=128,

out_features=64)

 self.dense3 = nn.Linear(in_features=64,

out_features=10)

 def forward(self, x):

 x = self.conv1(x)

 x = nn.ReLU()(x)

Chapter 4 IntroduCtIon to MLFLow

191

 x = self.conv2(x)

 x = nn.ReLU()(x)

 x = self.conv3(x)

 x = nn.ReLU()(x)

 x = self.flat1(x)

 x = self.dense1(x)

 x = nn.ReLU()(x)

 x = self.dense2(x)

 x = nn.ReLU()(x)

 x = self.dense3(x)

 x = nn.Softmax()(x)

 return x

Refer to Figure 4-72.

Figure 4-72. Defining the model’s architecture as a class

Chapter 4 IntroduCtIon to MLFLow

192

Next, let’s send your model to the device, define and initialize an

instance of Adam optimizer with the learning rate you set earlier, and set

your loss function:

model = model().to(device)

optimizer = torch.optim.Adam(model.parameters(),

lr=learning_rate)

criterion = nn.BCELoss()

Refer to Figure 4-73.

Next, you will define a data loader using functionality provided by

PyTorch to take care of batching your data set:

dataset = data.TensorDataset(x_train,y_train)

train_loader = data.DataLoader(dataset, batch_size=batch_size)

Refer to Figure 4-74.

Figure 4-73. Sending the model object to the device, defining your
optimizer, and initializing the loss function

Figure 4-74. Creating a data loader object out of your data set. With
this functionality, PyTorch will batch your data set for you, allowing
you to pass in a minibatch at a time in your training loop. This
essentially is what the TensorFlow 2/Keras .fit() function does, but
it’s all abstracted for you

Chapter 4 IntroduCtIon to MLFLow

193

As you can see, this is much simpler than having to make an intricate

loop to batch and pass in data yourself.

Finally, let’s define the training loop:

num_epochs = 5

for f in range(num_epochs):

 for batch_num, minibatch in enumerate(train_loader):

 minibatch_x, minibatch_y = minibatch[0], minibatch[1]

 output = model.forward(torch.Tensor

(minibatch_x.float()).cuda())

 loss = criterion(output, torch.Tensor

(minibatch_y.float()).cuda())

 optimizer.zero_grad()

 loss.backward()

 optimizer.step()

 print(f"Epoch {f} Batch_Num {batch_num} Loss {loss}")

This can take at least a couple minutes depending on your GPU, and

even longer if you’re using a CPU. Feel free to lower the number of epochs

if you’d like to decrease total training time.

You should see an output like Figure 4-75.

Chapter 4 IntroduCtIon to MLFLow

194

Now, let’s start an MLFlow run, calculate the metrics you want, and log

everything:

mlflow.set_experiment("PyTorch_MNIST")

with mlflow.start_run():

 preds = model.forward(torch.Tensor(x_test.float()).cuda())

 preds = np.round(preds.detach().cpu().numpy())

 eval_acc = accuracy_score(y_test, preds)

 auc_score = roc_auc_score(y_test, preds)

 mlflow.log_param("batch_size", batch_size)

 mlflow.log_param("num_epochs", num_epochs)

 mlflow.log_param("learning_rate", learning_rate)

Figure 4-75. Output of your training loop. Feel free to reduce the
number of epochs to save on training time, but this could potentially
hinder the model’s performance

Chapter 4 IntroduCtIon to MLFLow

195

 mlflow.log_metric("eval_acc", eval_acc)

 mlflow.log_metric("auc_score", auc_score)

 print("eval_acc: ", eval_acc)

 print("auc_score: ", auc_score)

 mlflow.pytorch.log_model(model, "PyTorch_MNIST")

mlflow.end_run()

As you can see, MLFlow integration is still quite easy with PyTorch.

Refer to Figure 4-76 to see the output.

Figure 4-76. Setting the experiment, and logging the parameters,
metrics, and the model to the MLFlow run

Chapter 4 IntroduCtIon to MLFLow

196

 MLFlow UI – Checking Your Run

Let’s open up the UI. Refer to Figure 4-77.

As you can see, there is a new experiment titled PyTorch_MNIST. Click

it. You should now see the run you just completed. Refer to Figure 4-78.

Now that your run has shown up, click it. You should see all the

parameters and metrics logged in that run. Refer to Figure 4-79.

Figure 4-77. Looking at the MLFlow UI now. Notice that your
experiment, PyTorch_MNIST, is created

Figure 4-78. The MLFlow UI showing your completed run

Chapter 4 IntroduCtIon to MLFLow

197

Also notice the model that’s been saved by MLFlow under artifacts.

Refer to Figure 4-80.

Figure 4-79. All the parameters, metrics, and artifacts (the model)
you specified have been logged

Figure 4-80. MLFlow has successfully logged the model as well

Chapter 4 IntroduCtIon to MLFLow

198

 Loading an MLFlow Model

Let’s now go over how to load this model using MLFlow. Copy the run

ID, and head back to the notebook. Run the following, but replace the

placeholders with your run ID:

loaded_model = mlflow.pytorch.load_model("runs:/YOUR_RUN_ID/

PyTorch_MNIST")

In our case, our run ID was 094a9f92cd714711926114b4c96f6d73, so

our code looks like Figure 4-81.

Now that’s done, so let’s make predictions and calculate the metrics

again:

preds = loaded_model.forward(torch.Tensor(x_test.float()).

cuda())

preds = np.round(preds.detach().cpu().numpy())

eval_acc = accuracy_score(y_test, preds)

auc_score = roc_auc_score(y_test, preds)

print("eval_acc: ", eval_acc)

print("auc_score: ", auc_score)

Refer to Figure 4-82 to see the output.

Figure 4-81. Loading the logged MLFlow model

Chapter 4 IntroduCtIon to MLFLow

199

As you can see, these metrics are the same as from the training run.

You now know how to load a PyTorch model using MLFlow and how you

can use it to make predictions.

With that, you now know how to integrate MLFlow into your PyTorch

experiments. Next, we will look at how you can integrate MLFlow into

PySpark.

 MLFlow with PySpark
In our final example, we will look at how MLFlow integrates with PySpark.

Like in the scikit-learn example, we will be looking at the application of a

logistic regression model to the credit card dataset. In fact, this code is very

similar to the PySpark example from Chapter 2.

Before we begin, here are the versions of the modules we are using,

including CUDA and CuDNN:

• PySpark – 2.4.5

• Matplotlib – 3.2.1

• Sklearn – 0.22.2.post1

• MLFlow – 1.10.0

• mumpy – 1.18.5

Figure 4-82. The output of calculating the evaluation metrics from
earlier but with the logged model. As you can see, the scores match
exactly

Chapter 4 IntroduCtIon to MLFLow

200

 Data Processing

With that, let’s get started. First, you must import all the necessary modules

and set up some variables for Spark:

import pyspark #

from pyspark.sql import SparkSession

from pyspark import SparkConf, SparkContext

from pyspark.sql.types import *

from pyspark.ml.feature import VectorAssembler

from pyspark.ml import Pipeline

from pyspark.ml.classification import LogisticRegression

import pyspark.sql.functions as F

import os

import seaborn as sns

import sklearn #

from sklearn.metrics import confusion_matrix

from sklearn.metrics import roc_auc_score, accuracy_score

import matplotlib #

import matplotlib.pyplot as plt

import mlflow

import mlflow.spark

os.environ["SPARK_LOCAL_IP"]='127.0.0.1'

spark = SparkSession.builder.master("local[*]").getOrCreate()

spark.sparkContext._conf.getAll()

print("pyspark: {}".format(pyspark.__version__))

print("matplotlib: {}".format(matplotlib.__version__))

print("seaborn: {}".format(sns.__version__))

print("sklearn: {}".format(sklearn.__version__))

print("mlflow: {}".format(mlflow.__version__))

Chapter 4 IntroduCtIon to MLFLow

201

Refer to Figure 4-83.

Next, let’s load your data set and specify what columns you want to

take:

data_path = 'data/creditcard.csv'

df = spark.read.csv(data_path, header = True,

inferSchema = True)

labelColumn = "Class"

columns = df.columns

numericCols = columns

numericCols.remove("Time")

numericCols.remove(labelColumn)

print(numericCols)

Figure 4-83. Importing the necessary modules and printing their
versions

Chapter 4 IntroduCtIon to MLFLow

202

Refer to Figure 4-84 to see the output.

Notice that you dropped the column Time here, like with the scikit-

learn example. This column just adds a lot of extraneous information that

doesn’t actually correlate very much with the label column and could even

possibly make the learning task harder than it needs to be.

Let’s see what the data frame looks like:

df.toPandas().head()

Refer to Figure 4-85 to see the output.

Figure 4-84. Loading the data and specifying the columns that you
want as a list

Figure 4-85. Converting the Spark data frame to Pandas and
checking the output. As you can see, the columns have loaded in
correctly, along with the data. The column Time has not been
dropped because you did not filter the data frame yet

Chapter 4 IntroduCtIon to MLFLow

203

You’ll notice that the columns you “dropped” are still showing up, like

Time. You haven’t filtered the columns you want yet, which you are going

to do now. Run the following to select the features you want from the data

frame and create your normal and anomaly splits:

stages = []

assemblerInputs = numericCols

assembler = VectorAssembler(inputCols=assemblerInputs,

outputCol="features")

stages += [assembler]

dfFeatures = df.select(F.col(labelColumn).alias('label'),

*numericCols)

normal = dfFeatures.filter("Class == 0").

sample(withReplacement=False, fraction=0.5, seed=2020)

anomaly = dfFeatures.filter("Class == 1")

normal_train, normal_test = normal.randomSplit([0.8, 0.2],

seed = 2020)

anomaly_train, anomaly_test = anomaly.randomSplit([0.8, 0.2],

seed = 2020)

Refer to Figure 4-86 to see the code in a cell.

Figure 4-86. Selecting the columns that you want and defining your
normal and anomaly train and test sets

Chapter 4 IntroduCtIon to MLFLow

204

Let’s look at the new data frame now:

dfFeatures.toPandas().head()

Refer to Figure 4-87.

Notice that the columns you dropped are gone. Now you know that

normal and anomaly don’t have the features you dropped either and that

everything is proceeding as planned. Let’s create the train and test sets:

train_set = normal_train.union(anomaly_train)

test_set = normal_test.union(anomaly_test)

Refer to Figure 4-88.

Let’s now move on to creating the feature vector that the logistic

regression model is going to use. Run the following to define the pipeline

and create your final train and test sets:

pipeline = Pipeline(stages = stages)

pipelineModel = pipeline.fit(dfFeatures)

train_set = pipelineModel.transform(train_set)

Figure 4-87. As you can see, Time has been dropped. This is the data
frame that your training and testing sets are derived from

Figure 4-88. Concatenating the normal and anomaly sets to create
the train and test sets

Chapter 4 IntroduCtIon to MLFLow

205

test_set = pipelineModel.transform(test_set)

selectedCols = ['label', 'features'] + numericCols

train_set = train_set.select(selectedCols)

test_set = test_set.select(selectedCols)

print("Training Dataset Count: ", train_set.count())

print("Test Dataset Count: ", test_set.count())

Refer to Figure 4-89.

Now that you’ve finished processing the data, let’s define a function to

train the model and calculate some relevant metrics:

def train(spark_model, train_set):

 trained_model = spark_model.fit(train_set)

 trainingSummary = trained_model.summary

 pyspark_auc_score = trainingSummary.areaUnderROC

 mlflow.log_metric("train_acc", trainingSummary.accuracy)

 mlflow.log_metric("train_AUC", pyspark_auc_score)

 print("Training Accuracy: ", trainingSummary.accuracy)

 print("Training AUC:", pyspark_auc_score)

 return trained_model

Figure 4-89. Defining the pipeline used to create the feature vector
that will be used to train the model. From the feature vector and the
label vector, you define your final train and test sets

Chapter 4 IntroduCtIon to MLFLow

206

Refer to Figure 4-90 to see the function in a cell.

Let’s now define a function to evaluate the model and calculate those

metrics, too:

def evaluate(spark_model, test_set):

 evaluation_summary = spark_model.evaluate(test_set)

 eval_acc = evaluation_summary.accuracy

 eval_AUC = evaluation_summary.areaUnderROC

 mlflow.log_metric("eval_acc", eval_acc)

 mlflow.log_metric("eval_AUC", eval_AUC)

 print("Evaluation Accuracy: ", eval_acc)

 print("Evaluation AUC: ", eval_AUC)

Refer to Figure 4-91.

Figure 4-90. The code to train the PySpark logistic regression model
and log the training accuracy and AUC score metrics

Chapter 4 IntroduCtIon to MLFLow

207

 MLFlow Run – Training, UI, and Loading an MLFlow
Model

Now that you have finished defining the training and evaluation functions

along with the metrics you want to log, it’s time to start an MLFlow run and

build a model:

lr = LogisticRegression(featuresCol = 'features', labelCol =

'label', maxIter=10)

mlflow.set_experiment("PySpark_CreditCard")

with mlflow.start_run():

 trainedLR = train(lr, train_set)

 evaluate(trainedLR, test_set)

 mlflow.spark.log_model(trainedLR,

"creditcard_model_pyspark")

mlflow.end_run()

Figure 4-91. The code to evaluate the trained PySpark logistic
regression model and log the evaluation accuracy and AUC score
metrics

Chapter 4 IntroduCtIon to MLFLow

208

Refer to Figure 4-92.

Alright, now that MLFlow has finished logging everything and the

run has ended, open up the MLFlow UI. You should see something like

Figure 4-93.

Notice that a new experiment called PySpark_CreditCard has been

created. Click it, and you should see something like Figure 4-94. If MLFlow

didn’t log the run here, try rerunning the cell. It should log it correctly.

Figure 4-92. The output of the MLFlow run. The experiment has
been created and the metrics and model successfully logged

Figure 4-93. The MLFlow UI showing that your experiment,
PySpark_CreditCard, has been created

Chapter 4 IntroduCtIon to MLFLow

209

If everything went well, you should see a run logged in this experiment.

Click it, and you should see something like Figure 4-95.

Finally, in the artifacts section, click the folder that says

creditcard_model_pyspark to expand it. You should see a folder called

sparkml that contains the PySpark logistic regression model. Refer to

Figure 4-96.

Figure 4-94. MLFlow UI showing that your run has successfully
finished

Figure 4-95. Looking at the run, it appears that all of your metrics
have successfully been logged

Chapter 4 IntroduCtIon to MLFLow

210

Now that you’ve verified MLFlow has logged everything you specified,

copy the run number at the top. Now go back to the notebook and run the

following, replacing the placeholder with your run:

model = mlflow.spark.load_model("runs:/YOUR_RUN_ID/

creditcard_model_pyspark")

In our case, our run was 58e6aac5d43948c6948bee29c0c04cca, so our

cell looks like Figure 4-97.

Now that the model has been loaded, let’s make some predictions with

it. Run the following:

predictions = model.transform(test_set)

y_true = predictions.select(['label']).collect()

y_pred = predictions.select(['prediction']).collect()

Refer to Figure 4-98 to see the code in a cell.

Figure 4-96. MLFlow has also logged the PySpark model. There is
no concrete model file like with the TensorFlow or PyTorch examples
because of the way PySpark stores its models

Figure 4-97. Loading the logged MLFlow model

Chapter 4 IntroduCtIon to MLFLow

211

Let’s print out the evaluation accuracy and the AUC score:

print(f"AUC Score: {roc_auc_score(y_true, y_pred):.3%}")

print(f"Accuracy Score: {accuracy_score(y_true, y_pred):.3%}")

Refer to Figure 4-99.

You will notice that the AUC score differs compared to what was

calculated in the evaluation function. This is likely because PySpark

calculates the ROC curve slightly differently because it has direct access

to the model itself. On the other hand, with scikit-learn, you only have the

true labels and the predictions to work with, so the ROC curve is calculated

slightly differently.

Finally, let’s construct the confusion matrix:

conf_matrix = confusion_matrix(y_true, y_pred)

ax = sns.heatmap(conf_matrix, annot=True,fmt='g')

ax.invert_xaxis()

ax.invert_yaxis()

plt.ylabel('Actual')

plt.xlabel('Predicted')

Figure 4-98. Making predictions with your loaded model

Figure 4-99. Printing out the evaluation metrics. The AUC score
noticeably differs, but the accuracy score matches what was displayed
during the MLFlow run

Chapter 4 IntroduCtIon to MLFLow

212

Refer to Figure 4-100.

From the confusion matrix, you can see that the AUC score as

calculated by PySpark must be reflecting its performance on how well

it classifies normal data. Looking at the anomalies, a fair chunk of the

fraudulent data has been misclassified. Roughly speaking, the model only

got two-thirds of the anomalies when evaluated on the test data. Perhaps

this explains the disparity between what scikit-Learn says is the AUC score

and what PySpark says is the AUC score. Both must have calculated the

ROC curves slightly differently with PySpark’s graph somehow favoring the

excellent true positive rate of the normal data’s classification.

With that, you now know how to integrate MLFlow into your PySpark

experiments.

Next, we will take a look at how you can deploy your models locally

and how you can query the models with samples of data and receive

predictions.

Figure 4-100. Displaying the confusion matrix using the true values
and the predictions made by the model you loaded

Chapter 4 IntroduCtIon to MLFLow

213

 Local Model Serving
 Deploying the Model
Serving and querying models locally is very easy and can be done in the

command line. You only need the experiment ID and the run ID to serve

the model. This is where the print statement from earlier can apply, as it

prints the run ID of that specific run. If you just want to serve the latest

model, you may do so using that ID.

Otherwise, you can look in the MLFlow UI, select a model run that

suits your needs, and paste the run this way.

Before you begin, go to the MLFlow UI once again, and click the

experiment scikit_learn_experiment. Pick a run and copy the run

ID. Don’t forget the model name that you logged the model with either,

which should be log_reg_model.

You may create a new notebook at this point to keep the code more

organized, but be sure to import the following:

import pandas as pd

import mlflow

import mlflow.sklearn

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.metrics import roc_auc_score, accuracy_score,

confusion_matrix

Chapter 4 IntroduCtIon to MLFLow

214

import numpy as np

import subprocess

import json

You’ll notice that you are now importing subprocess. If you’re using the

same notebook, make sure to import this module as well.

Refer to Figure 4-101 to see this code in a cell.

Now, open up your command prompt/terminal so that you can begin

to serve your local model. First, you need to change your directory to one

that contains the mlruns folder with all your experiments. Next, you need

two things: your model run and your model name.

Again, your model run can be anything you pick from the MLFlow UI

or it can simply be the latest run. The model name is whatever you set it to

when logging the model. In this case, it will be log_reg_model.

Once you have that, run the following command in your command

prompt/terminal. We have generalized the command, so be sure to replace

the fields with your model run and model name, respectively:

mlflow models serve --model-uri runs:/YOUR_MODEL_RUN/

YOUR_MODEL_NAME -p 1235

Figure 4-101. Importing the necessary modules

Chapter 4 IntroduCtIon to MLFLow

215

In our case, our model run was 3862eb3bd89b43e8ace610c521d974e6,

and our model name was once again log_reg_model. And so, the

command we ran looks like Figure 4-102.

In text, the command looks like this:

mlflow models serve --model-uri runs:/3862eb3bd89b43e8ace610c52

1d974e6/log_reg_model -p 1235

MLFlow should start constructing a new conda environment right

away that it will use to serve locally. In this environment, it installs basic

packages and specific packages that the model needs to be able to run.

After some time, you should see something like in Figure 4-103.

Figure 4-102. The command that we ran to serve our model locally

Figure 4-103. The result of running the command to deploy
the model locally. You might see something different, such as
localhost:1235, but this is because we have docker installed

Chapter 4 IntroduCtIon to MLFLow

216

MLFlow should create a new conda environment before hosting the

model on your local server. The port option -p lets you set a specific port to

host the model on. We selected a specific port so that we can have MLFlow

UI running at the same time, as both of them default to port 5000. In our

case, our MLFlow UI is running on port 1234, so we are serving the model

on port 1235.

 Querying the Model
You are now ready to query the model with data and receive predictions.

This is where the subprocess module comes in, and you’ll see why shortly.

First, let’s load up your data frame again. Run the following code:

df = pd.read_csv("data/creditcard.csv")

You should see something like Figure 4-104.

Next, select 80 values from your data frame to query your model with.

Run the following code:

input_json = df.iloc[:80].drop(["Time", "Class"],

axis=1).to_json(orient="split")

You should see something like Figure 4-105.

Figure 4-105. Converting a selection of 80 rows, dropping the Time
and Class columns since they were dropped in the original x_train
used to train the model, to a JSON with a split orient

Figure 4-104. Loading the credit card dataset

Chapter 4 IntroduCtIon to MLFLow

217

The next step is important because of how you preprocessed the data

before training your model originally. To show why it’s so important, we

will quickly demonstrate the difference in evaluation metrics from passing

in non-scaled data and scaled data. First of all, here is the code to send

data to the model and receive predictions back:

proc = subprocess.run(["curl", "-X", "POST", "-H",

"Content- Type:application/json; format=pandas-split",

"--data", input_json, "http://127.0.0.1:1235/invocations"],

stdout=subprocess.PIPE, encoding='utf-8')

output = proc.stdout

df2 = pd.DataFrame([json.loads(output)])

df2

Essentially, what this does is run the following command within

Python itself:

curl -X POST -H "Content-Type:application/json;

format=pandas- split" –data "CONTENT_OF_INPUT_JSON"

"http://127.0.0.1:1235/invocations"

The core of the problem is that if you are running this in command

line, pasting the JSON format data of the data frame can get very messy

because there’s so many columns. That is why we chose to use subprocess

as it is easier to directly pass in the JSON itself using a variable name,

input_json in this case, to hold the contents of the JSON.

You should see something like Figure 4-106.

Now, you will query the model with input data that is not scaled.

Figure 4-106. Sending data to the locally hosted model and receiving
predictions from the model

Chapter 4 IntroduCtIon to MLFLow

218

 Querying Without Scaling

You will keep the selection of 80 values from earlier and query the model.

The model accepts data in the JSON format, so you will have to convert

the format of your data before sending it to the model. Run the cell in

Figure 4- 106.

You should see something like Figure 4-107.

The resulting data frame is what you get by converting the predictions

that you got back from the model into a data frame. Since you have the true

predictions, let’s calculate an AUC score and an accuracy score to see how

the model did. Run the following code:

y_true = df.iloc[:80].Class

df2 = df2.T

eval_acc = accuracy_score(y_true, df2)

y_true.iloc[-1] = 1

eval_auc = roc_auc_score(y_true, df2)

print("Eval Acc", eval_acc)

print("Eval AUC", eval_auc)

Figure 4-107. The list of predictions that you get after querying the
model with input_json. Notice that it’s predicting a lot of anomalies.
This is the first red flag that indicates something’s wrong

Chapter 4 IntroduCtIon to MLFLow

219

First of all, you had to transpose df2 using .T so that you can get the

predictions to be in a Pandas Series format. Next, the AUC score cannot

be calculated if one of the arrays y_true or y_preds only have one class.

In this case, y_true is only comprised of normal values, so you had to

manipulate the last value and make it 1 when it really isn’t just to get an

AUC score. Of course, the resulting AUC score will be nonsense.

You should see something like Figure 4-108.

As you can see, the accuracy score is horrible. This basically means

that the model doesn’t know the difference between the anomalies and the

normal points but seems to have some idea about normal points.

The reason the model did so poorly despite doing so well during the

training process is that the input data has not been scaled. You will see

the difference in model performance when you now scale the data before

passing it in.

Figure 4-108. Evaluating the accuracy and the AUC score from the
predictions. The AUC score is nonsense, but the accuracy score reveals
that the model has performed very poorly

Chapter 4 IntroduCtIon to MLFLow

220

 Querying with Scaling

You will take the same split of data except you will now scale it before

passing it in. Run the following code to recreate the data that you used to fit

the scaler when training the model originally:

normal = df[df.Class == 0].sample(frac=0.5, random_state=2020).

reset_index(drop=True)

anomaly = df[df.Class == 1]

normal_train, normal_test = train_test_split(normal,

test_size = 0.2, random_state = 2020)

anomaly_train, anomaly_test = train_test_split

(anomaly, test_size = 0.2, random_state = 2020)

scaler = StandardScaler()

scaler.fit(pd.concat((normal, anomaly)).drop(["Time", "Class"],

axis=1))

You should see something like Figure 4-109.

Now that you have fit the scaler, let’s transform your data selection:

scaled_selection = scaler.transform(df.iloc[:80].drop

(["Time", "Class"], axis=1))

input_json = pd.DataFrame

(scaled_selection).to_json(orient="split")

Figure 4-109. Recreating the original dataset that you used to fit the
standard scaler when processing the data originally. Using this, you
will transform your new sample of data and pass it into the model

Chapter 4 IntroduCtIon to MLFLow

221

Refer to Figure 4-110.

Now run the following:

proc = subprocess.run(["curl", "-X", "POST", "-H",

"Content- Type:application/json; format=pandas-split",

 "--data", input_json, "http://127.0.0.1:1235/invocations"],

 stdout=subprocess.PIPE, encoding='utf-8')

output = proc.stdout

preds = pd.DataFrame([json.loads(output)])

preds

You should see something like Figure 4-111.

One thing to note is that you are scaling it on the combination of all

normal data and all anomaly data, as you did when you were creating

the train, test, and validation splits. Since the model was trained on data

that was scaled on the partition of data you used in the training process

Figure 4-110. Scaling the selection of 80 values from the original
data frame and converting it into a JSON format to be sent to the
model

Figure 4-111. Querying the model with the scaled values. From a
first glance, the predictions appear to be correct this time around

Chapter 4 IntroduCtIon to MLFLow

222

(the training, testing, and validation data together), passing in data scaled

differently won’t result in the correct predictions. When you scale the new

data, it must be scaled after fitting it on the training set.

One problem that may eventually arise is that new data might have

a different distribution than the original training data. This could lead to

performance issues with the model, but really that’s a sign that you need to

train your model to update it on the new data.

Let’s check how your model did now:

y_true = df.iloc[:80].Class

preds = preds.T

eval_acc = accuracy_score(y_true, preds)

y_true.iloc[-1] = 1

eval_auc = roc_auc_score(y_true, preds)

print("Eval Acc", eval_acc)

print("Eval AUC", eval_auc)

Refer to Figure 4-112.

As you can see, the accuracy score is noticeably higher, and the

model’s performance is reminiscent of when it was trained and evaluated.

Unfortunately, the AUC score isn’t a very accurate reflection of the model’s

Figure 4-112. Checking the accuracy and the AUC scores of the
predictions. The accuracy score is far better, but you will need more
prediction data with both normal and anomaly values to be able to
get AUC scores

Chapter 4 IntroduCtIon to MLFLow

223

performance since the samples you are querying the model with only have

normal data.

Let’s see how the model performs when you query it with a larger

sample of data.

 Batch Querying

Unfortunately, there is a limit to how many data samples you can ask

the model to make predictions on. The number 80 is really close to the

maximum number of samples you can send at one time. So how do you get

around this issue and make predictions on more than just 80 samples? For

one, you can try batching the samples and making predictions one batch at

a time.

Run the following code:

test = df.iloc[:8000]

true = test.Class

test = scaler.transform(test.drop(["Time", "Class"], axis=1))

preds = []

batch_size = 80

for f in range(100):

 sample = pd.DataFrame(test[f*batch_size:(f+1)*batch_size]).

to_json(orient="split")

 proc = subprocess.run(["curl", "-X", "POST", "-H",

 "Content-Type:application/json;

format=pandas-split", "--data",

 sample, "http://127.0.0.1:1235/

invocations"],

 stdout=subprocess.PIPE,

encoding='utf-8')

Chapter 4 IntroduCtIon to MLFLow

224

 output = proc.stdout

 resp = pd.DataFrame([json.loads(output)])

 preds = np.concatenate((preds, resp.values[0]))

eval_acc = accuracy_score(true, preds)

eval_auc = roc_auc_score(true, preds)

print("Eval Acc", eval_acc)

print("Eval AUC", eval_auc)

Here, you are selecting the first 8,000 samples from the data frame.

Since the batch size is 80, you have 100 batches that you are passing to the

model. Of course, you must scale this data as well before passing it in. You

will scale it in a manner similar to how you did it earlier: you will fit the

scaler on the same normal and anomaly data that you used in the model

training pipeline samples to transform the values you want to send to the

model. Once finished, you should see something like Figure 4-113. This

might take several seconds to finish, so sit tight!

Figure 4-113. The results of querying the model with the first 8,000
samples in the data frame. Notice that the AUC score is far better
samples

Chapter 4 IntroduCtIon to MLFLow

225

This time, you don’t have to worry about only having one class in

the entire data. This is because there are examples of anomalies in this

selection of 8,000 data points, so the true labels and predictions should

contain samples of both classes.

You can see that the model performs quite well on this data, which

includes data that the model has never seen before. Although you did

end up using all of the anomalies when training the data, the model still

performs well on the normal data, as evidenced by the relatively high AUC

score.

In fact, let’s plot a confusion matrix to see how the model did and

what’s bringing down the AUC score. Run the following code:

conf_matrix = confusion_matrix(true, preds)

ax = sns.heatmap(conf_matrix, annot=True,fmt='g')

ax.invert_xaxis()

ax.invert_yaxis()

plt.ylabel('Actual')

plt.xlabel('Predicted')

plt.title("Confusion Matrix")

Refer to Figure 4-114 to see the output.

Chapter 4 IntroduCtIon to MLFLow

226

Figure 4-114. The confusion matrix for the predictions and true
values. The model performed excellently and was able to classify every
normal point correctly and a majority of the anomaly points correctly
samples

As you can see, the confusion matrix shows that the model has

performed very well on this data. Not only did it classify the normal points

perfectly, but it even classified most of the anomaly points correctly as

well.

With that, you hopefully know more about the process of deploying

and querying a model. When you deploy to a cloud platform, the querying

process follows a similar path where you must deploy a model on the cloud

platform and query it by sending in the data in a JSON format.

 Summary
MLFlow is an API that can help you integrate MLOps principles into your

existing code base, supporting a wide variety of popular frameworks.

In this chapter, we covered how you can use MLFlow to log metrics,

parameters, graphs, and the models themselves. Additionally, you learned

how to load the logged model and make use of its functionality. As for

frameworks, we covered how you can apply MLFlow to your experiments

Chapter 4 IntroduCtIon to MLFLow

227

in scikit-learn, TensorFlow 2.0/Keras, PyTorch, and PySpark, and we also

looked at how you can take one of these models, deploy it locally, and

make predictions with your model.

In the next chapter, we will look at how you can take your MLFlow

models and use MLFlow functionality to help deploy them to Amazon

SageMaker. Furthermore, we will also look at how you can make

predictions using your deployed model.

Chapter 4 IntroduCtIon to MLFLow

229© Sridhar Alla, Suman Kalyan Adari 2021
S. Alla and S. K. Adari, Beginning MLOps with MLFlow,
https://doi.org/10.1007/978-1-4842-6549-9_5

CHAPTER 5

Deploying in AWS
In this chapter, we will cover how you can operationalize your MLFlow

models using AWS SageMaker. We will cover how you can upload your

runs to S3 storage, how you can build and push an MLFlow Docker

container image to AWS, and how you can deploy your model, query it,

update the model once it is deployed, and remove a deployed model.

 Introduction
In the previous chapter, you learned what MLFlow is and how you can

utilize the functionality it provides to integrate MLOps principles into

your code. You also looked at how to deploy a model to a local server and

perform model inference. However, now it’s time to move to the next stage

and explore how you can deploy your machine learning models to a cloud

platform so that multiple entities can use its prediction services.

Before you begin, here are some important prerequisites:

• You must have the AWS command line interface (CLI)

installed and have your credentials configured.

 – Once your credentials are verified, the AWS CLI lets

you connect to your AWS workspace. From here,

you can create new buckets, check your SageMaker

endpoints, and so on all through the command

line.

https://doi.org/10.1007/978-1-4842-6549-9_5#DOI

230

• You must have an Identity and Access Management

(IAM) execution role defined that grants SageMaker

access to your S3 buckets. Refer to Figure 5-8 to see

more on this.

• You must have Docker installed and working properly.

Verify that you can build Docker images.

 – It is essential to have Docker working on your

system because without it, MLFlow cannot build

the Docker container image to push to the AWS

ECR.

We also recommend that you learn about AWS in general and how it

works. Having background knowledge of AWS and how it works can help

you understand this chapter and allow you to fix any issues much more

easily.

In detail, we will go over the following in this chapter:

• Configuring AWS: Here, you set up a bucket and push

your mlruns folders here to be stored on the cloud.

These folders contain information about all of the runs

associated with the experiments along with the logged

models themselves. Next, you build a special Docker

container as defined by MLFlow and push that to AWS

ECR. SageMaker uses this container image to serve the

MLFlow model.

• Deploying a model to AWS SageMaker: Here, you

use the built-in MLFlow SageMaker module code to

push a model to SageMaker. After SageMaker creates

an endpoint, the model is hosted on here utilizing the

docker image that you pushed earlier to the ECR.

Chapter 5 Deploying in aWS

231

• Making predictions: Once the model has finished

deployment and is ready to serve, you use Boto3 to

query the model and receive predictions.

• Switching models: MLFlow provides functionality that

enables you to switch out a deployed model with a new

one. SageMaker essentially updates the endpoint with

the new model you are trying to deploy.

• Removing the deployed model: Finally, MLFlow lets

you remove your deployed model altogether and delete

the endpoint. This is important to do so that you don’t

incur the charges of leaving an endpoint running.

Also, it is important to note that AWS is actively being worked on, and

functionality and operating procedures can change! What that means is

that something that works now may not work later on.

However, MLFlow specifically provides support for SageMaker, so if

something fundamental to how SageMaker runs changes in the future,

MLFlow is likely to account for it in the next build.

In the absolute worst-case scenario where that doesn’t happen,

you can still run an MLFlow server and host it on AWS. You will still be

able to deploy models and make inferences with them, and the overall

functionality is still preserved. Instead of SageMaker directly hosting the

model using an MLFlow container image, you would do something similar

to the local model deployment experiment we did in Chapter 4, except

you would connect to the server IP and port that the MLFlow server is

hosted on.

We will explore how to do this with Google Cloud, as MLFlow does not

support Google Cloud like it does SageMaker and Azure.

With that, let’s get started!

Chapter 5 Deploying in aWS

232

 Configuring AWS
Before you can actually push any model to SageMaker, you need to set up

your Amazon workspace. You can push models from your local mlruns

directory, similar to how you did local model deployment, but it is much

more convenient and centralized to have all your runs be pushed to AWS

and stored in a bucket. This way, all teams can access models that are

stored here. In a sense, this can act as your “model registry,” although it

doesn’t offer the same functionality as the model registry provided by

MLFlow.

What MLFlow allows you to do is take specific runs and determine

whether to stage that model to the development branch or to production.

In this case, you can have buckets for each team, separated into

development or production branches. It’s a couple extra steps on top of

MLFlow’s model registry, but it would still allow you to enjoy the benefits

of having a model registry.

In this case, you will simply be creating one bucket to host all of your

MLFlow runs. From here, you will be picking a specific run and deploying

to SageMaker. To keep it simple, you will once again use the scikit-learn

logistic regression model that you trained as the model you are deploying.

So with that, create a simple bucket and name it something like

mlflow-sagemaker. You can either create it through the AWS CLI or do so

through the AWS console in your browser.

We will do the latter so that you can visually see what Amazon is really

doing when a bucket is created.

Keep in mind that AWS is always working on its UI, so your screen may

not look exactly like what is portrayed. That being said, you are still likely

able to access S3 bucket storage services, so the core functionality should

still be the same, despite the UI changes.

When you log into your portal, you should see something like Figure 5- 1.

Chapter 5 Deploying in aWS

233

As you can see, you can look up services with the search bar. Here,

type S3 and click the result that states “S3” with the description “Scalable

Storage in the Cloud.”

You should go to a page that looks like Figure 5-2.

Figure 5-1. The home screen of the AWS console. Keep in mind that
yours is likely to look different to the one shown here

Figure 5-2. What your screen might look like when you open the S3
bucket services module. We have greyed out the names of the buckets,
but you can see string names here

Chapter 5 Deploying in aWS

234

You should see a button that says Create Bucket. Click it and you will

see something like Figure 5-3.

We named our bucket mlops-sagemaker-runs. You don’t have to worry

about the rest of the options, so scroll down to the bottom and click Create

Bucket. Once done, you should be able to see your bucket in the list of

buckets.

From here, let’s use a subprocess to sync the local mlruns directory to

this bucket. What this does is upload the entire mlruns directory to your

bucket, so that all of your runs are stored on the cloud.

Figure 5-3. This is how your bucket creation screen may look. In
this case, you are just naming the bucket and aren’t concerned with
anything else

Chapter 5 Deploying in aWS

235

First, collect the following attributes:

• s3_bucket_name: What is the name of the S3 bucket you

are trying to push to?

• mlruns_directory: What is the location of the mlruns

directory you’re pushing to the bucket?

Based on that, run the following. We included the bucket name and

mlruns directory in our case, so just replace them with your respective

values.

import subprocess

s3_bucket_name = "mlops-sagemaker-runs"

mlruns_direc = "./mlruns/"

output = subprocess.run(["aws", "s3", "sync", "{}".

format(mlruns_direc), "s3://{}".format(s3_bucket_name)],

stdout=subprocess.PIPE, encoding='utf-8')

print(output.stdout)

print("\nSaved to bucket: ", s3_bucket_name)

After running that code, you should see something similar to Figure 5- 4,

letting you know that it has synchronized your local mlruns directory with

the bucket. If you see no output, that means there’s nothing new to push

(if you are rerunning it). Ensure that the mlruns directory is in the same

directory as this notebook; otherwise it won’t be able to find it.

Chapter 5 Deploying in aWS

236

Once this is done, you can proceed to building the container that

SageMaker will use to host the model once you get to deployment. To do

that, run the following command in your terminal:

mlflow sagemaker build-and-push-container

Again, this requires you to have your Amazon credentials configured.

You do not need to create a new docker image each time you use a new

framework. This one image will be able to handle all your MLFlow models

thanks to modularization. This is similar to the deployment pipeline we

discussed in Chapter 3 from which you simply need to swap models in and

out.

This step can take some time, so sit back, relax, and let it do its thing.

You should see something like Figure 5-5.

Figure 5-4. This is what your output may look like when you are first
syncing your mlruns directory with the bucket. Make sure that your
mlruns directory is in the same directory as this notebook file

Chapter 5 Deploying in aWS

237

Once this is finished, the console should output something like

Figure 5-6.

Now, you should be able to see a new container in the portal when you

navigate to Amazon ECR.

Figure 5-5. Something similar to what you should see when you run
the command to build the container

Figure 5-6. What you should see when the docker container image
has successfully been built and pushed to Amazon ECR

Chapter 5 Deploying in aWS

238

From your home console, navigate to Amazon ECR, and verify you see

something called mlflow-pyfunc. You should see something like Figure 5- 7,

confirming that the docker image has successfully been pushed to AWS ECR.

With that, you have set up everything related to MLFlow functionality
that you need in your AWS console in order to deploy your models to
SageMaker.

Let’s now look at deploying one of the models.

 Deploying a Model to AWS SageMaker
To deploy a model to SageMaker, you need to gather the following
information:

• app_name

• model_uri

• execution_role

• region

• image_ecr_url

The execution role refers to the Identity and Access Management
(IAM) role, which you can find by searching for “IAM” in the console. Once
you have created or selected an execution role (make sure it can access S3
and can perform get, put, delete, and list operations on it), copy the entire

value that exists there.

Figure 5-7. After running the command, you should be able to see
your container in the ECR repository list

Chapter 5 Deploying in aWS

239

As for the specific policy that this role should follow, refer to Figure 5-8

to see how our IAM execution role is set up.

As for the execution role ARN number, you should see something like

Figure 5-8.

Figure 5-8. In the IAM tab, under policies, select (or create) the role
you are going to use to execute the deployment process. There, you
should be able to see the specific Policy ARN value, which you must
copy and keep track of

Make sure you have the Policy ARN value copied down. AWS lets you

copy it to the clipboard if you click the little clipboard symbol next to the

policy.

To find the image_ecr_url value, go back to the ECR and look for

something like Figure 5-7. Now click it to see something like Figure 5-9.

Chapter 5 Deploying in aWS

240

Copy the value where it says Image URI, except for the version you

want. We are running MLFlow version 1.10.0, so copy the value for that one.

Next, find the specific run that you want to deploy. Go to your list of S3

buckets and click the one you created, which should be titled

mlops- sagemaker- runs.

In here, navigate until you see the folder with several runs displayed.

We picked the top run. Refer to Figure 5-10.

Figure 5-10. Look at your bucket to find the run you want to deploy.
(These runs all have the same performance metrics, so it does not
matter which one we pick. If it did, we could look at it through the
MLFlow UI (ensuring the terminal is in the same directory as the
same mlruns directory we pushed) and select the best run.) Also,
remember to take note of the experiment ID and the name of the
model you logged. You should be able to find it if you click the run ID
and then artifacts. For our case, it is log_reg_model

Figure 5-9. The Image URI is the value you want to copy

Chapter 5 Deploying in aWS

241

With all that information gathered, let’s proceed to the deployment.

Run the following:

import boto3

import mlflow.sagemaker as mfs

import json

app_name = "mlops-sagemaker"

execution_role_arn = "arn:aws:iam::180072566886:role/

service- role/AmazonSageMaker-ExecutionRole-20181112T142060"

image_ecr_url = "180072566886.dkr.ecr.us-east-2.amazonaws.com/

mlflow-pyfunc:1.10.0"

region = "us-east-2"

s3_bucket_name = "mlops-sagemaker-runs"

experiment_id = "8"

run_id = "1eb809b446d949d5a70a1e22e4b4f428"

model_name = "log_reg_model"

model_uri = "s3://{}/{}/{}/artifacts/{}/".format

(s3_bucket_name, experiment_id, run_id, model_name)

This will set up all of the parameters that you will use to run the

deployment code.

Finally, let’s get on to the actual deployment code:

mfs.deploy(app_name=app_name,

 model_uri=model_uri,

 execution_role_arn=execution_role_arn,

 region_name=region,

 image_url=image_ecr_url,

 mode=mfs.DEPLOYMENT_MODE_CREATE)

You should see something like Figure 5-11.

Chapter 5 Deploying in aWS

242

This step can take a while. If you want to check on the status of your

SageMaker endpoint, open up the portal and search for and navigate to

SageMaker. There should be a section for Endpoints where you can see

all of the SageMaker endpoints that exist. You should see your current

endpoint with the status of “creating,” as in Figure 5-12.

Figure 5-11. You should see something like this when you are
attempting to deploy the model. Don’t worry if it takes its time

Chapter 5 Deploying in aWS

243

Once this endpoint is successfully created, which you will know when
you see the status update to “InService,” you can now move on to making
predictions.

 Making Predictions
Making predictions is simple. All you need is the name of the endpoint and
the functionality that boto3 provides in order for the model to be queried.
Let’s define a function to query the model:

def query(input_json):

 client = boto3.session.Session().client
("sagemaker- runtime", region)

 response = client.invoke_endpoint(
 EndpointName=app_name,
 Body=input_json,
 ContentType='application/json; format=pandas- split',

)

Figure 5-12. What you should see in the Endpoints section of
Amazon SageMaker. Once it has finished creating the endpoint, you
should see it update the status to “InService.”

Chapter 5 Deploying in aWS

244

 preds = response['Body'].read().decode("ascii")

 preds = json.loads(preds)

 return preds

Now, let’s load your data, process it, and scale it just like you did for the

local model deployment example. Make sure that the folder data exists,

ensuring that creditcard.csv exists within it. Run the following:

import pandas as pd

import mlflow

import mlflow.sklearn

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.metrics import roc_auc_score, accuracy_score,

confusion_matrix

import numpy as np

df = pd.read_csv("data/creditcard.csv")

Once the import statements and the data frame has been loaded, run

the following:

normal = df[df.Class == 0].sample(frac=0.5, random_state=2020).

reset_index(drop=True)

anomaly = df[df.Class == 1]

normal_train, normal_test = train_test_split(normal,

test_size = 0.2, random_state = 2020)

anomaly_train, anomaly_test = train_test_split(anomaly,

test_size = 0.2, random_state = 2020)

Chapter 5 Deploying in aWS

245

scaler = StandardScaler()

scaler.fit(pd.concat((normal, anomaly)).drop(["Time",

"Class"], axis=1))

Once this is all finished, run the following to ensure that the model is

actually making predictions:

scaled_selection = scaler.transform(df.iloc[:80].drop

(["Time", "Class"], axis=1))

input_json = pd.DataFrame

(scaled_selection).to_json(orient="split")

pd.DataFrame(query(input_json)).T

You should see an output like Figure 5-13.

Figure 5-13 shows a successful query of the model while it is hosted on

a SageMaker endpoint and the predictions received as a response.

Let’s run the batch query script with some modifications:

test = pd.concat((normal.iloc[:1900], anomaly.iloc[:100]))

true = test.Class

test = scaler.transform(test.drop(["Time", "Class"], axis=1))

preds = []

Figure 5-13. Querying the deployed model with the scaled data
representing the first 80 rows of the data frame and getting a response
back

Chapter 5 Deploying in aWS

246

batch_size = 80

for f in range(25):

 print(f"Batch {f}", end=" - ")

 sample = pd.DataFrame(test[f*batch_size:(f+1)*batch_size]).

to_json(orient="split")

 output = query(sample)

 resp = pd.DataFrame([output])

 preds = np.concatenate((preds, resp.values[0]))

 print("Completed")

eval_acc = accuracy_score(true, preds)

eval_auc = roc_auc_score(true, preds)

print("Eval Acc", eval_acc)

print("Eval AUC", eval_auc)

Once finished, you should see something like Figure 5-14.

Chapter 5 Deploying in aWS

247

All this is great, but what do you do when you want to switch the model

that is deployed? Well, SageMaker allows you to update the endpoint and

switch to a new model. Let’s look at how to do this.

 Switching Models
Perhaps you want to update your model, or you have no more use for the

current model and its prediction services so you want to replace it without

having to delete and create a new endpoint. In this case, you can simply

update the endpoint and swap out the model that is currently hosted on

there. To do so, you only need to collect the new model_uri.

Figure 5-14. Output of the batch querying script. You included a mix
of 100 anomalies with 1900 normal points so that you can get a better
idea of how the model performs against anomalies as well. Otherwise,
you would have gotten a handful of anomalies

Chapter 5 Deploying in aWS

248

This time, the model_uri refers to the URI of the new model that you

want to deploy. In your case, you are selecting the second run of the three

runs you uploaded to your bucket. Everything else remains the same, so

you only have to get a new model_uri.

Now, run the following, replacing the run_id value with your chosen

run_id:

new_run_id = "3862eb3bd89b43e8ace610c521d974e6"

new_model_uri = "s3://{}/{}/{}/artifacts/{}/".format

(s3_bucket_name, experiment_id, new_run_id, model_name)

Now that you have run this, run the following code to update the

model:

mfs.deploy(app_name=app_name,

 model_uri=new_model_uri,

 execution_role_arn=execution_role_arn,

 region_name=region,

 image_url=image_ecr_url,

 mode=mfs.DEPLOYMENT_MODE_REPLACE)

You will find that this function looks quite similar to the one you

used to deploy the model. The only parameter that differs is the mode,

as you are now doing mfs.DEPLOYMENT_MODE_REPLACE instead of mfs.

DEPLOYMENT_MODE_CREATE.

Refer to Figure 5-15 to see what the output should look like.

Note that this also can take some time to finish.

Chapter 5 Deploying in aWS

249

While this is running, you can check on the endpoint in your portal to

see that it is now updating. Refer to Figure 5-16 to see this.

Figure 5-15. This is what your output should look like after running
the update code

Figure 5-16. The endpoint is now updating. Once finished, it should
show “InService” just like when the endpoint was being created

Chapter 5 Deploying in aWS

250

Once it finishes running, you can query this model again using the

same function. You don’t have to modify the batch script either.

Now that you know how to update the endpoint with a new model, we

will look at how you can remove the endpoint and the deployed model.

 Removing Deployed Model
Perhaps you have multiple endpoints each with a different model hosted,

and you no longer want to keep an endpoint running because of the cost.

To delete an endpoint, you only need the following information:

• app_name

• region

With that information defined, which it already should be, you can

simply run the following:

mfs.delete(app_name=app_name,region_name=region)

You should see it output something like Figure 5-17. This process

finishes quite quickly.

You can go check the endpoint in the portal as well, and it should show

something like Figure 5-18.

Figure 5-17. The output of the deletion command

Chapter 5 Deploying in aWS

251

As you can see, the endpoint is now completely gone.

One thing to note is that you should make sure you don’t accidentally

leave any resources running because the costs can certainly stack up over

time and put a dent in your wallet. For services like SageMaker endpoints,

you are charged by the hour, so be sure to delete them once you’re done

with them.

As for the S3 bucket and the ECR container, those are a one-time

charge that only bill for data transfer.

With that, you now know how to operationalize your MLFlow model

with AWS SageMaker.

 Summary
MLFlow provides explicit AWS SageMaker support in its operationalization

code. And so we covered how to upload your runs to an S3 bucket and

how to create and push an MLFlow Docker container image for AWS

SageMaker to use when operationalizing your models. We also covered

Figure 5-18. SageMaker endpoint resources after the deletion. There
should be nothing here if the deletion process went successfully

Chapter 5 Deploying in aWS

252

how to deploy your model on an endpoint, query it, update the endpoint

with a new model, and delete the endpoint. Hopefully now you now know

how to operationalize your machine learning models with MLFlow and

AWS SageMaker.

In the next chapter, we will look at how you can operationalize your

MLFlow models with Microsoft Azure.

Chapter 5 Deploying in aWS

253© Sridhar Alla, Suman Kalyan Adari 2021
S. Alla and S. K. Adari, Beginning MLOps with MLFlow,
https://doi.org/10.1007/978-1-4842-6549-9_6

CHAPTER 6

Deploying in Azure
In this chapter, we will cover how you can use Microsoft Azure to

operationalize your MLFlow models. In particular, we will look at how

you can also utilize Azure’s built-in functionality to deploy a model to a

development branch and to a production branch, along with how you can

query the models once deployed.

 Introduction
In the previous chapter, we went over how to deploy your models to

Amazon SageMaker, manage them through update or delete events,

and query them. Now, we will shift our focus to show how you can

operationalize your MLFlow models using Microsoft Azure.

Before you begin, here is an important prerequisites:

• Install azureml-sdk in your Python environment.

Just like with AWS, Microsoft Azure is constantly being worked on and

updated. Since MLFlow supports Microsoft Azure, you should be able

to utilize MLFlow to operationalize your models. Any new functionality

is sure to be documented by MLFlow, and in the absolute worst-case

scenario, you should still be able to host a server on Azure and maintain

your MLOps functionality that way.

Again, we will explore how to do this in the next chapter when we look

at how to operationalize your MLFlow models with the Google Cloud API.

https://doi.org/10.1007/978-1-4842-6549-9_6#DOI

254

In detail, we will go over the following in this chapter:

• Configuring Azure: Here, you basically use MLFlow’s

functionality to build a container image for the model

to be hosted in. Then, you push it to Azure’s Azure

Container Instances (ACI), similar to how you pushed

an image to the Amazon AWS Elastic Container

Registry (ECR).

• Deploying a model to Azure (dev stage): Here, you

use built-in azureml-sdk module code to push a

model to Azure. However, this is a development stage

deployment, so this model is not production-ready

since its computational resources are limited.

• Making predictions: Once the model has finished

deployment, it is ready to be queried. This is done

through an HTTP request. This is how you can verify

that your model works once hosted on the cloud since

it’s in the development stage.

• Deploying to production: Here, you utilize MLFlow

Azure module code to deploy the model to production

by creating a container instance (or any other

deployment configuration provided, like Azure

Kubernetes Service).

• Making predictions: Similar to how you query the

model in the dev stage, you query the model once it

has been deployed to the production stage and run the

batch query script from the previous chapter.

• Switching models: MLFlow does not provide explicit

functionality to switch your models, so you must delete

the service and recreate it with another model run.

Chapter 6 Deploying in azure

255

• Removing the deployed model: Finally, you undo

every deployment that you did and remove all

resources. That is, you delete both the development

and production branch services as well as the container

registries and any additional services created once you

are done.

With that, let’s get started!

 Configuring Azure
Before you can start using Azure’s functionality to operationalize your

models, you must first create or connect to an existing Azure workspace.

You can do this either through code or the UI in a browser.

In your case, you will open up the portal in the browser and learn how

to create a workspace. Refer to Figure 6-1.

Figure 6-1. An example of the Microsoft Azure portal home screen

Chapter 6 Deploying in azure

256

Next, click the Create a resource option and search for “Machine

Learning.” You should see something like Figure 6-2.

Click the Create button. You should see something like Figure 6-3. (We

filled the fields with our own parameters.)

Your subscription might differ from ours. For the resource group, we

created a new one titled azure-mlops.

The fields you completed in Figure 6-3 are enough to create your

workspace. Next, click the Review + create option and click Create once

Azure states that the validation procedure has been passed and allows you

to click Create.

Figure 6-2. An example of the service “Machine Learning” provided
by Azure. You want to create a workspace within this service, so click
the Create button

Chapter 6 Deploying in azure

257

This will take some time to deploy. Once the workspace has been

created, go back to the home portal and click the All resources option. You

should see something like Figure 6-4.

Click your workspace, which should have an image of a chemical

beaker next to it.

In this overview, you will see several parameters associated with

this workspace. Make sure to keep track of the following attributes of the

workspace so that you can connect to it in the code:

Figure 6-3. Workspace creation UI (we filled in the fields with our
own parameters)

Chapter 6 Deploying in azure

258

• workspace_name (azure-mlops-workspace)

• subscription (The value where it says Subscription- ID)

• resource_group (azure-mlops)

• location (East-US)

Refer to Figure 6-5.

Figure 6-5. You should see something like this for your own
workspace. Here we’ve censored potentially sensitive fields, but you
should be able to see your own unique subscription ID on your screen.
This is the value you want to use

Figure 6-4. You might see something like this when you look at the
All resources option

Chapter 6 Deploying in azure

259

Now that you have that, run the following to create/connect to your

own workspace:

import azureml

from azureml.core import Workspace

workspace_name = "MLOps-Azure"

workspace_location="East US"

resource_group = "mlflow_azure"

subscription_id = "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"

workspace = Workspace.create(name = workspace_name,

 location = workspace_location,

 resource_group = resource_group,

 subscription_id = subscription_id,

 exist_ok=True)

If you have successfully connected to your workspace, the cell should

run without any issues.

Next, you must build the MLFlow container image to be used by Azure.

Here, you also specify the run of the model you are trying to deploy.

In the case of Amazon SageMaker, you were able to reference runs

from your local machine or runs from an S3 bucket. You can do the same

thing for Azure, except using Azure’s storage entities called blobs.

Either way, you need the run ID of the model you are deploying and

the artifact scheme that the model is logged in. For the models you stored

in Amazon S3 buckets, you used the scheme s3:/, but this time you will

just use a run locally. If you’d like, you can still use your Amazon S3 bucket

or Google Cloud buckets. Where you store your run does not matter.

Run the following, replacing the values with your specific run and

storage scheme:

run_id = "1eb809b446d949d5a70a1e22e4b4f428"

model_name = "log_reg_model"

model_uri = f"runs:/{run_id}/{model_name}"

Chapter 6 Deploying in azure

260

The model name should be the same in your case unless you changed

it. Since we are using local runs, we have a URI starting with runs:/. Again,

change this to whatever is appropriate in your case.

Finally, with all that information set, let’s create the container image:

import mlflow.azureml

model_image, azure_model = mlflow.azureml.build_image

(model_uri=model_uri,

workspace=workspace,

 model_name="sklearn_logreg_dev",

 image_name="model",

 description="SkLearn LogReg Model

for Anomaly Detection",

 synchronous=False)

You should see something like Figure 6-6. You may or may not see the

warning messages depending on your version of MLFlow.

Figure 6-6. Building and pushing the container to Azure’s container
registry. Ignore the warning messages for now. You might not see these
messages in the future. Since this is code created and maintained by
MLFlow, it is likely that they will provide support for whatever new
functionality Azure pushes

Chapter 6 Deploying in azure

261

Next, run the following to check the status of the container:

model_image.wait_for_creation(show_output=True)

You should see something like Figure 6-7.

Once the image has been created, you can now deploy your model.

 Deploying to Azure (Dev Stage)
One interesting bit of functionality that Azure provides is the ACI

webservice. This webservice is specifically used for the purposes of

debugging or testing some model under development, hence why it is

suitable for use in the development stage.

You are going to deploy an ACI webservice instance based on the

model image you just created.

Run the following:

from azureml.core.webservice import AciWebservice, Webservice

aci_service_name = "sklearn-model-dev"

aci_service_config = AciWebservice.deploy_configuration()

aci_service = Webservice.deploy_from_image

(name=aci_service_name,

 image=model_image,

 deployment_config=aci_service_config,

 workspace=workspace)

Figure 6-7. Checking the output of the progress in the image creation
operation

Chapter 6 Deploying in azure

262

You should see something like Figure 6-8.

This exact way of starting the service may be deprecated in the near

future in favor of Environments. For the time being, you should still be able

to start an ACI service in this manner, but the important thing to know

is that there is a web service specifically tailored for development stage

testing.

Now run the following to check the progress:

aci_service.wait_for_deployment(show_output=True)

You should see something like Figure 6-9.

Before making your predictions, let’s first verify that you can reach your

service:

aci_service.scoring_uri

Figure 6-9. The output you should see from checking if the
deployment has succeeded

Figure 6-8. The output of creating the ACI service. It seems that this
function may be removed in the future, but for now this is one way to
access the ACI service and deploy the model

Chapter 6 Deploying in azure

263

You should see something like Figure 6-10. If not, try going into your

resources in the portal to verify that a new container exists with the name

sklearn-model-dev. If not, try rerunning the cells in the same order. It

should display some URI this time.

You should see something like Figure 6-10.

You can now make predictions with this model.

 Making Predictions
Now you need to acquire some data to predict with.

Just like before, you will be loading the credit card dataset,

preprocessing it, and setting aside a small batch that you will query the

model with. Run the following blocks of code, and make sure you have the

folder named data in this directory with creditcard.csv in it:

import pandas as pd

import mlflow

import mlflow.sklearn

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.metrics import roc_auc_score, accuracy_score,

confusion_matrix

Figure 6-10. The scoring URI is displayed, indicating that you can
connect to it and make predictions

Chapter 6 Deploying in azure

264

import numpy as np

import subprocess

import json

df = pd.read_csv("data/creditcard.csv")

Once you have loaded all the modules and have loaded the data, run

the following:

normal = df[df.Class == 0].sample(frac=0.5, random_state=2020).

reset_index(drop=True)

anomaly = df[df.Class == 1]

normal_train, normal_test = train_test_split(normal, test_size

= 0.2, random_state = 2020)

anomaly_train, anomaly_test = train_test_split(anomaly,

test_size = 0.2, random_state = 2020)

scaler = StandardScaler()

scaler.fit(pd.concat((normal, anomaly)).drop(["Time", "Class"],

axis=1))

In cells, the above two blocks of code should look like Figure 6-11.

Chapter 6 Deploying in azure

265

Once you are all done with preparing the data, let’s define a function to

help you query the deployed model:

import requests

import json

def query(scoring_uri, inputs):

 headers = {

 "Content-Type": "application/json",

 }

 response = requests.post(scoring_uri, data=inputs,

headers=headers)

 preds = json.loads(response.text)

 return preds

Figure 6-11. The import statements and data processing code. You
also define the scaler here and fit it to the data, just as you did when
originally training these models

Chapter 6 Deploying in azure

266

Now you can select a few points and make a prediction:

data_selection = df.iloc[:80].drop(["Time", "Class"], axis=1)

input_json = pd.DataFrame(scaler.transform(data_selection)).

to_json(orient="split")

preds = query(scoring_uri=aci_service.scoring_uri,

inputs=input_json)

pd.DataFrame(preds).T

Together, you should see something like Figure 6-12.

As you can see, the model has returned predictions that look correct

(thanks to the scaling).

Now that you know how to deploy to a development branch, let’s look

at how you can deploy the model to production using built-in MLFlow

functionality.

Figure 6-12. Querying the model deployed on an ACI webservice
with some sample data and receiving a response

Chapter 6 Deploying in azure

267

 Deploying to Production
MLFlow provides Azure support and helps us deploy our models directly,

using a container instance by default.

Let’s get straight into it. Run the following, replacing the names with

anything else preferred:

azure_service, azure_model = mlflow.azureml.deploy(model_uri,

 workspace,

 service_name="sklearn-logreg",

 model_name="log-reg-model",

 synchronous=True)

It’s worth mentioning that you can deploy to a specific web service. By

default, MLFlow will host the model on a container instance, but you can

specify a computer cluster. To learn more, refer to the documentation here:

www.mlflow.org/docs/latest/python_api/mlflow.azureml.html.

Once the code finishes running, which can take some time, you can

also check to see if the URI can be printed:

azure_service.scoring_uri

Together, you should see something like Figure 6-13.

Figure 6-13. Successfully creating the endpoint and verifying that the
service has a URI

Chapter 6 Deploying in azure

http://www.mlflow.org/docs/latest/python_api/mlflow.azureml.html

268

Now that you have successfully deployed your model, let’s move on to

making predictions.

 Making Predictions
Now that you have your model deployed, let’s run your code to make

predictions.

First of all, let’s run the following to make sure that you are receiving

predictions. You should already have defined input_json:

preds = query(scoring_uri=azure_service.scoring_uri,

inputs=input_json)

pd.DataFrame(preds).T

You should now see something like Figure 6-14.

Now, let’s run your batch querying script:

test = pd.concat((normal.iloc[:1900], anomaly.iloc[:100]))

true = test.Class

test = scaler.transform(test.drop(["Time", "Class"], axis=1))

preds = []

Figure 6-14. Querying the deployed model with your batch of scaled
data to ensure it works

Chapter 6 Deploying in azure

269

batch_size = 80

for f in range(25):

 print(f"Batch {f}", end=" - ")

 sample = pd.DataFrame(test[f*batch_size:(f+1)*batch_size]).

to_json(orient="split")

 output = query(scoring_uri=azure_service.scoring_uri,

inputs=sample)

 resp = pd.DataFrame([output])

 preds = np.concatenate((preds, resp.values[0]))

 print("Completed")

eval_acc = accuracy_score(true, preds)

eval_auc = roc_auc_score(true, preds)

print("Eval Acc", eval_acc)

print("Eval AUC", eval_auc)

Once finished, you should see something like Figure 6-15.

Chapter 6 Deploying in azure

270

With that, you now know how to query your deployed model and make

predictions with it. This should be the same procedure if you’ve opted to

deploy to a specific compute cluster with, for example, Azure Kubernetes

Service.

 Cleaning Up
Unfortunately, there does not seem to be any specific functionality to

update the service with a new model. The procedure seems to be to delete

the service and create a new service with another model URI.

So, with that, let’s now look at how you can remove all the services you

just created.

Figure 6-15. The results of running the batch querying script. This
effectively made predictions on 2,000 data points

Chapter 6 Deploying in azure

271

Run the following:

aci_service.delete()

azure_service.delete()

Refer to Figure 6-16.

Now, navigate to the All resources section again from the home portal.

Check every item with the resource group type named Container Instance.

You should see that there are none. Figure 6-17 shows what this might

look like. (We have a container instance here, but it is unrelated.) Since

you deleted the services just now, you should not see sklearn-logreg or

sklearn-model-dev.

Figure 6-17. You should not see any resources titled sklearn-logreg or
sklearn-model-dev of type container instance. (There is one here, but
it is not related to the experiments from above, and only exists to show
what a resource with this resource type looks like.)

Figure 6-16. Deleting the web services you launched earlier

Chapter 6 Deploying in azure

272

If you want to remove services from here, you can simply delete the

container instances or other services, as in Figure 6-18.

You can now delete everything else (or just the new resources created

for this chapter) in your UI following this same procedure to clean up your

Azure workspace.

With that, you now know how to use MLFlow to deploy a model on

Microsoft Azure.

It’s worth mentioning that Azure has a lot of additional functionality

relating to monitoring your machine learning experiments and more,

but that might also come with additional costs depending on the

depth of functionality you are going after. Be sure to refer to their

excellent documentation if you’d like to learn more about Azure and its

functionality.

 Summary
Like Amazon AWS, Microsoft Azure is a cloud platform that performs many

advanced services for a wide range of users. In particular, Azure has a lot

of support for operationalizing machine learning models using built-in

functionality separate from MLFlow.

Figure 6-18. Deleting services manually through the All resources UI

Chapter 6 Deploying in azure

273

In this chapter, you learned how to build a container image for a

specific MLFlow model run, deploy it in a development setting/production

setting, and query the model on Microsoft Azure.

In the next chapter, we will look at how you can use Google Cloud as

a platform to operationalize your MLFlow models. There is no explicit

MLFlow support for Google Cloud, so you will be adopting a different

approach where you serve the models on a server hosted on Google Cloud

and make predictions that way.

Chapter 6 Deploying in azure

275© Sridhar Alla, Suman Kalyan Adari 2021
S. Alla and S. K. Adari, Beginning MLOps with MLFlow,
https://doi.org/10.1007/978-1-4842-6549-9_7

CHAPTER 7

Deploying in Google
In this chapter, we will cover how you can use MLFlow and Google Cloud

to operationalize your models even without MLFlow providing explicit

deployment support for Google Cloud.

More specifically, we will cover how to set up your Google Cloud

bucket and virtual machine (used to run the server) and how you can

operationalize and query your models.

 Introduction
In the previous chapter, we went over how you can deploy your models to

Microsoft Azure, manage them through update or delete events, and query

them. This time, we will explore how you can operationalize your models

using Google Cloud.

MLFlow does not provide explicit support for deploying in Google

Cloud like it does with AWS SageMaker and Microsoft Azure, and so you

will approach this a bit differently from how you operationalized models in

the previous two chapters.

This time, you will use the same model serving functionality that you

used in Chapter 4 except you will host it on a Google Cloud machine that

is accessible by the Internet. However, deployment is far quicker this way

since you don’t have to wait for the creation of an endpoint. Furthermore,

once you set up the machine, swapping models is very simple, and you can

serve multiple models by using different ports.

https://doi.org/10.1007/978-1-4842-6549-9_7#DOI

276

It’s worth noting that Google Cloud has an assortment of advanced

tools and functionality dedicated to machine learning, such as Kubeflow.

Kubeflow is a tool that allows you to essentially integrate your machine

learning lifecycles into Kubernetes. And so all your machine learning

pipelines are managed through Kubernetes. Kubeflow also integrates into

the Google Cloud platform, seeing as how Kubernetes was built by Google.

In this chapter, we will just go over how you can deploy MLFlow logged

models. We won’t get into any of the platform-specific tools that help

manage your machine learning lifecycles.

Before you begin, here is an important prerequisite:

• Download and install the Google Cloud SDK so you can

use the CLI to connect to your server.

In detail, we will go over the following in this chapter:

• Configuring Google: This is perhaps the hardest step

in this deployment process. First, you set up a bucket

and push the contents of your mlruns folder to be

stored on the cloud.

Next, you set up the virtual machine that will host

your server when you deploy the model. This

involves installing Conda and MLFlow.

Finally, you set up a firewall to allow your server

to have inbound access through the default port

of 5000 that MLFlow uses so that you can actually

connect to this server through your Jupyter

notebook.

• Deploying and querying the model: Here, you check

the IP address, pick a run, and launch the code to serve

the model. Then, you query the model and run the

batch query script as well.

Chapter 7 Deploying in google

277

• Updating and removing a deployment: Here, you stop

deployment and simply rerun the model serving script

with a different model run to fulfill model switching

functionality. After you have updated the model,

removing the deployment is as easy as stopping the

model serving.

• Cleaning up: Here, you go through all of the new

services you used and delete them all so as not to incur

any charges.

With that, let’s get started!

 Configuring Google
Most of the work that is involved in deploying your models using Google

Cloud is actually taken up by the configuration process. Once you set up

the storage and the machine to host your model, model serving becomes

an extremely easy task. To switch up models, you only need to change up

the model run and let MLFlow take care of the rest.

As for where you are storing the models, you will be using Google

Cloud Storage to do so. Once again, this fulfills a functionality similar to

storing your runs in Amazon S3 buckets or Azure blobs. The purpose of

pushing all of your runs to the cloud is so that there is a centralized storage

container that holds the models. Now anyone can access them anywhere

around the world, and there are no issues with version mismatch where

your copy of the run happens to differ with someone else’s. In a sense, this

is serving the role of a model registry, just without the added functionality

of the MLFlow Model Registry.

Chapter 7 Deploying in google

278

 Bucket Storage
And so, let’s begin. First, open up the Google Cloud portal. You should

see something like Figure 7-1. Be aware, though, that Google Cloud is also

constantly being updated, so your portal screen may look different.

Notice the scroll bar on the left side of the screen. This is where you can

look at the services Google Cloud provides. Scroll to the section that says

Storage, and click the service named Storage. You should see something

similar to Figure 7-2.

Figure 7-1. What our Google Cloud portal screen looks like

Figure 7-2. Something similar to what you might see. In your case,
you might not have any buckets here

Chapter 7 Deploying in google

279

Click the button that says CREATE BUCKET. Type in mlops-storage.

Next, where it asks for a location type, select the Region option to have

the lowest costs. Refer to Figure 7-3.

Keep the rest of the options as is and click the Create button. You

should now see something that looks like Figure 7-4.

Figure 7-3. Specifying the storage option for your bucket. Select
Region to keep the costs the lowest, although with the amount of data
you are pushing, the actual costs are very little

Figure 7-4. What your bucket might look like after creation

Chapter 7 Deploying in google

280

From here, you want to upload your MLFlow experiments (the

content of your mlruns directory) as folders, so click Upload Folder, and

upload all of the folders inside the mlruns directory. You can leave out

the folder named .trash. In our case, we only uploaded the experiment
using scikit-learn and left the rest out since we won’t be using the other

experiments.

You should see something like Figure 7-5 when finished.

With that, you have finished configuring your storage. The next thing to

configure is the virtual machine that will be hosting your model.

Figure 7-5. Our bucket after uploading the contents of our mlruns
directory. We only uploaded the experiment using scikit-learn to save
on costs

Chapter 7 Deploying in google

281

Figure 7-6. What your VM Instances screen may look like. In our
case, we already have another machine running, but that is irrelevant
since we are creating a new machine

 Configuring the Virtual Machine
After going back to the portal, scroll to the Compute section and click the

Compute Engine option. You should see something like Figure 7-6. You

want to make sure you’re in the portal for the service titled VM Instances.

Chapter 7 Deploying in google

282

Now, click Create Instance and you should see something like Figure 7- 7.

In our case, we filled in or selected the options that we want our VM

machine to use. We named our machine mlops-server, selected our region

(it autoselects a zone for you), and specified that we want to use Ubuntu

18.04 LTS. Finally, at the end, we want to allow HTTPS traffic from the

internet.

Finally, when finished, you should be able to see your VM machine on

the list of machines. What you want to do now is to open your VM machine

instance by clicking the name mlops-server. This should take you to a

screen that looks like Figure 7-8.

Figure 7-7. The options you can fill in when creating your VM
machine instance. You should match the selections shown in the
figure to ensure consistency with our results

Chapter 7 Deploying in google

283

Now look at the box that says SSH. There should be a little down arrow

indicating that it is a drop-down list of something. Click that arrow and

select the View gcloud command option. Refer to Figure 7-9.

Figure 7-8. What you should see when you click mlops-server. Notice
the box that says SSH. You will use that shortly

Figure 7-9. The drop-down options for connecting to this VM instance

Chapter 7 Deploying in google

284

This should take you to a popup window that looks like Figure 7-10.

You have two options: running that command in a new instance of the

Google Cloud SDK CLI (in our case, we had to search “Google Cloud SDK

Shell” and it opened a configured Google Cloud terminal instance), or

running it through a shell directly on the portal page itself. You can do

either option, as both connect to the VM anyway.

Copy and paste that command in your terminal to connect to the

VM. When finished running, you should see something like Figure 7-11,

where it opens up a PuTTY instance of the actual shell inside the VM.

Figure 7-10. The command that lets you connect to the VM via
SSH. You can also run it within the portal page itself if you’d like

Chapter 7 Deploying in google

285

This is where you must configure your VM so that it can host your

MLFlow models.

First, run the following commands:

sudo apt update

sudo apt upgrade

Answer “y” to any prompts.

Once finished, you can now install Conda. Without Conda, MLFlow

won’t be able to reconstruct the environment that the MLFlow model

was logged in. This is part of MLFlow’s modularization. In the case of

SageMaker and Azure, you built containers that, as their name suggests,

“contain” these Conda environments already. This way, SageMaker does

not have to reinstall any Conda packages once the container is in the

cloud. It simply has to run an instance of the container and it already has

everything configured.

First, find out how to install Anaconda on Linux by going to its

webpage. An install link should be provided. Copy the link and paste it

somewhere. You will retrieve that link using a command.

Figure 7-11. The result of running the gcloud command that the
portal provided. On the right, you can see a PuTTY terminal where
you have the shell open inside the VM

Chapter 7 Deploying in google

286

Run the following one at a time:

cd /tmp

curl -O https://repo.anaconda.com/archive/

Anaconda3-2020.07- Linux- x86_64.sh

You should see something like Figure 7-12.

Next, let’s install Anaconda by running the following. You can type in

bash Anaconda and press Tab to autofill the rest of the script name.

bash https://repo.anaconda.com/archive/

Anaconda3-2020.07- Linux- x86_64.sh

It should ask you to look through the license agreement. At the end,

answer yes, and press Enter to confirm the default installation location.

Conda should then proceed with the installation. Answer yes to any

further prompts. Once it’s done, restart the shell (close the PuTTY client

and rerun the command or cloud shell), and you should now have Conda

fully configured.

As you will now see, Conda has already started the base environment.

Let’s create a new environment by running the following code:

conda create -n mlflow python=3.7

Answer “y” to any following prompts, and you should see something

like Figure 7-13.

Figure 7-12. The output of fetching the Anaconda installation script

Chapter 7 Deploying in google

287

Next, you will install the following packages: mlflow and

google- cloud- storage. The former is self-explanatory: you will need MLFlow

to do anything with MLFlow. You need google-cloud-storage because you are

going to access your runs from the Google storage bucket from earlier.

Run the following:

conda activate mlflow

pip install mlflow google-cloud-storage

Running this code should also install all of the dependencies. In the

future, should you need to install any more dependencies, it’s as simple as

activating the mlflow environment and using pip install to get any more

packages or update existing packages.

Once it has finished installing everything, you should see something

like Figure 7-14.

Figure 7-13. If you see this, then your Conda environment has
successfully installed

Chapter 7 Deploying in google

288

With that, you have fully configured your VM. All that is left is to

configure the firewall.

 Configuring the Firewall
First, you need to look at the internal IP that your VM instance is using. To

do that, run the following:

ifconfig

You should see something like Figure 7-15.

Figure 7-14. The final output after finishing installing the necessary
packages in the Conda environment

Chapter 7 Deploying in google

289

Make a note of the internal IP, which we have highlighted in red. In

your case, it will be different.

Now, you must add a firewall to allow access to your server once it is

started. Go back to the portal, scroll to the section that says Networking,

and click the VPC Networks option. You should see something like

Figure 7-16.

Figure 7-15. Something similar to what you should see when you
run the command. We have highlighted in red where you can find the
internal IP of your machine. In our case, it is 10.142.0.4. Yours will be
different

Chapter 7 Deploying in google

290

Now, click Firewall and then click Create Firewall Rule. Namely, you

want to enter the following values:

• Name: mlflow-server

• Target tags: mlops-server, http-server, https-server

• Source IP ranges: 0.0.0.0/0

• Protocols and Ports: Check TCP and type 5000

If you made a mistake, you can edit the firewall rules. You should see

something like Figure 7-17.

Figure 7-16. The VPC Networks module in the portal. Click the
Firewall option to look at the firewall options

Chapter 7 Deploying in google

291

Figure 7-17. What your firewall configuration should look like. We
have autofilled the values with our own

Chapter 7 Deploying in google

292

Now click Create. You are done configuring the firewall and

configuring everything else in Google Cloud. Now you can move on to

deploying your model.

 Deploying and Querying the Model
With your virtual machine fully configured, it’s time to deploy your model.

Make sure you still have that internal IP logged in. Go back to the

PuTTY client and now enter the following command:

mlflow models serve -m gs://mlops-storage/EXPERIMENT_ID/RUN_ID/

artifacts/MODEL_NAME -h 10.142.0.4

Our command looks like the following. We simply took the first run in

the Google Storage bucket.

mlflow models serve -m gs://mlops-storage/8/1eb809b446d949d5a70

a1e22e4b4f428/artifacts/log_reg_model -h 10.142.0.4

You should see something like Figure 7-18.

Chapter 7 Deploying in google

293

Figure 7-18. This is what your output should look like if it
successfully built the Conda environment and is now serving the
model

There’s only one more step that remains before you can successfully

make predictions with this model. You must now see what your external

IP is. To do so, go back to the VM Instances page to find your VM machine.

You should see something like Figure 7-19.

Chapter 7 Deploying in google

294

Once you have the external IP address, copy it down somewhere.

Now you can start up your Jupyter notebook and query this model.

In a Jupyter notebook cell, run the following. Make sure you have the

data folder in the same directory as this notebook, and that the data folder

contains the creditcard.csv file:

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.metrics import roc_auc_score, accuracy_score,

confusion_matrix

Figure 7-19. The VM Instances section in the portal should display
the external IP of your server. We have highlighted ours in red, but
yours is most likely something different

Chapter 7 Deploying in google

295

import numpy as np

import subprocess

import json

df = pd.read_csv("data/creditcard.csv")

Next, you define your query() function that you will use to get model

predictions:

def query(input_json):

 proc = subprocess.run(["curl", "-X", "POST", "-H",

"Content-Type:application/json; format=pandas-split",

 "--data", input_json,

"http://34.75.74.9:5000/invocations"],

 stdout=subprocess.PIPE, encoding='utf-8')

 output = proc.stdout

 preds = json.loads(output)

 return preds

Notice that the IP is now http://34.75.74.9:5000/invocations.

Basically, your IP should take the form of http://YOUR_EXTERNAL_

IP:5000/invocations, replacing the placeholder with the external IP

address of your VM.

Let’s now query your model:

input_json = df.iloc[:80].drop(["Time", "Class"],

axis=1).to_json(orient="split")

pd.DataFrame(query(input_json)).T

Altogether, you should see something like Figure 7-20.

Chapter 7 Deploying in google

296

As expected, the predictions aren’t correct because you did not scale

the data before querying the model with it. However, you have verified that

you have queried the correct address and that the model is able to return

predictions.

Now run the following cells:

normal = df[df.Class == 0].sample(frac=0.5, random_state=2020).

reset_index(drop=True)

anomaly = df[df.Class == 1]

normal_train, normal_test = train_test_split(normal, test_size

= 0.2, random_state = 2020)

anomaly_train, anomaly_test = train_test_split(anomaly,

test_size = 0.2, random_state = 2020)

Figure 7-20. The output of querying the model with the first 80 rows
of your data frame

Chapter 7 Deploying in google

297

scaler = StandardScaler()

scaler.fit(pd.concat((normal, anomaly)).drop(["Time", "Class"],

axis=1))

test = pd.concat((normal.iloc[:1900], anomaly.iloc[:100]))

true = test.Class

test = scaler.transform(test.drop(["Time", "Class"], axis=1))

preds = []

batch_size = 80

for f in range(25):

 print(f"Batch {f}", end=" - ")

 sample = pd.DataFrame(test[f*batch_size:(f+1)*batch_size]).

to_json(orient="split")

 output = query(sample)

 resp = pd.DataFrame([output])

 preds = np.concatenate((preds, resp.values[0]))

 print("Completed")

eval_acc = accuracy_score(true, preds)

eval_auc = roc_auc_score(true, preds)

print("Eval Acc", eval_acc)

print("Eval AUC", eval_auc)

Once finished, you should see something like Figure 7-21.

Chapter 7 Deploying in google

298

 Updating and Removing a Deployment
Updating the model deployment is extremely easy. With how you set it

up, it’s only a matter of quitting the model serving command (Ctrl-C), and

rerunning the command with a different run ID.

Let’s try deploying a different run. In your case, check your Google

Storage bucket and pick the second run.

In our case, we ran the following:

mlflow models serve -m gs://mlops-storage/8/3862eb3bd89b43e8ace

610c521d974e6/artifacts/log_reg_model -h 10.142.0.4

As you can see in Figure 7-22, it successfully deployed, and we can

simply query it using the same script.

Figure 7-21. The results of running your batch query script

Chapter 7 Deploying in google

299

As for removing a deployment, all you have to do is just cancel the

command with Ctrl-C and your deployment is now cancelled.

With that, you now know how to serve models, switch a model and

deploy a different one, and remove a deployment by simply canceling the

model serving command.

 Cleaning Up
It’s time to delete every instance of a service that you created so that you

won’t incur any charges. Here’s a list of all of the services you used:

• Google Cloud Storage Bucket

• Compute Engine VM Instance

• Networking Firewall Rule

Figure 7-22. Deploying a different model run using the same
command convention

Chapter 7 Deploying in google

300

Beginning with your VM Instance, you want to click STOP to first

stop the VM from running. You should see something like Figure 7-23

depending on where you access this VM.

After that, you can simply click DELETE to remove the VM. Stopping

the VM only ensures that you won’t be billed for CPU/GPU utilization, but

it won’t stop any charges that result from services linked to the VM.

Next, let’s go to the Storage bucket. Simply check your bucket and click

DELETE to remove this storage. Refer to Figure 7-24.

Lastly, you may remove the firewall rule as well, but be sure to not

remove any other rules that you might have in there.

Figure 7-23. The VM instance after stopping it

Figure 7-24. Removing your storage bucket

Chapter 7 Deploying in google

301

With that, your workspace should be cleaned up, and there shouldn’t

be any more services that may incur charges.

 Summary
Google Cloud is a cloud platform that provides many advanced services for

a wide range of users. While MLFlow does not explicitly provide support

for deployment for Google Cloud, you are still able to operationalize your

models using MLFlow’s model serving functionality and Google Cloud’s

compute engine to serve the models on the cloud.

In this chapter, you learned how to set up Google Cloud so that it can

deploy your models on a virtual machine. In particular, you looked at

how you can push your MLFlow runs to a bucket, how you can set up the

Conda environment on a virtual machine, how you can set up a firewall

to allow your model to be accessed in order to be queried, and how you

can manage your deployments by simply switching out run IDs (and

experiment IDs where appropriate).

In the Appendix, you can look at how Databricks helps you

operationalize your models and manage them through the use of a model

registry.

Chapter 7 Deploying in google

303© Sridhar Alla, Suman Kalyan Adari 2021
S. Alla and S. K. Adari, Beginning MLOps with MLFlow,
https://doi.org/10.1007/978-1-4842-6549-9

APPENDIX

 Databricks
In this appendix, we will cover what Databricks is as well as how you

can utilize its built-in MLFlow functionality to log MLFlow runs within

Databricks itself, how to deploy models from Databricks to Azure, and how

the MLFlow model registry works in Databricks.

 Introduction
Databricks is an open platform and cloud service that provides

interoperability with other popular AI and data services like AWS and

Microsoft Azure. Databricks also created Apache Spark, Delta Lake, and

MLFlow (see Chapter 4 to learn what MLFlow is).

Before we begin, you will need a Databricks account. You have the

option of creating a “community edition” account, which is free to users

but is limited in its functionality. You will be able to use basic MLFlow

functionality on top of whatever Python functionality you have (PySpark is

supported, for example), but you will not be able to use the model registry

functionality.

To sign up for one, head on over to this website:

https://community.cloud.databricks.com/.

Otherwise, you will have to pay to be able to use Databricks by

choosing a subscription plan for your account.

https://doi.org/10.1007/978-1-4842-6549-9#DOI
https://community.cloud.databricks.com/

304

With Databricks, you can integrate with Amazon AWS or Microsoft

Azure. If you choose to subscribe to a plan from Databricks, you will be

integrating with AWS. However, you can also deploy Databricks in Azure,

which you can find more information about here:

 https://azure.microsoft.com/en-us/services/databricks/.

Be warned, although Microsoft Azure does offer a free, 14-day trial of

Databricks, you cannot create clusters without upgrading to the premium

version of Azure Databricks (with a paid Azure subscription).

In this appendix, we will be using the community edition of

Databricks, which is free to sign up for an use. The only exception here is

the section in which we cover the model registry, which seems to only be

available to premium Databricks users.

In detail, we will go over the following:

• Logging MLFlow runs within Databricks: You can run

your Jupyter notebooks within Databricks itself, which

provides functionality to import your old notebooks.

For this part, you will import your notebook from

Chapter 4 where you conduct experiments using scikit-

learn. All runs will be logged within Databricks.

• MLFlow UI: Databricks has a built-in MLFlow UI that

allows you to see all of your runs per experiment just as

you would in the browser. You will look at your experiment

using this UI and inspect a run that you will log.

• Deploying to AWS/Azure: Depending on what you integrate

with, you can deploy your models to one of these services. In

this chapter, we will be deploying to Microsoft Azure.

• MLFlow Model Registry: With premium Databricks

(non-community edition), you have the added

capability of having a model registry. Here, we will go

over what the model registry is and how it works.

With that, let’s get started!

Appendix dAtAbricks

https://azure.microsoft.com/en-us/services/databricks/

305

 Running Experiments in Databricks
Once you have Databricks set up, whether in community edition or

otherwise, you should be greeted with a home screen that looks somewhat

like Figure A-1.

Where it says Common Tasks, go down until you see the option titled

New MLFlow Experiment. Click this option.

You can type in any other name you like, but you should see something

like Figure A-2.

Figure A-1. The Databricks home screen. If you have the community
edition, you won’t have the Models tab on the navigation bar to the
left, but otherwise it should look about the same

Appendix dAtAbricks

306

Figure A-2. The screen you should see when creating an MLFlow
experiment

Figure A-3. The screen displayed after experiment creation. Note that
the experiment name is now /Users/sadari@bluewhale.one/sklearn.
Be sure to make note of this as this is the full experiment name you
will use when setting the experiment in the code

Go ahead and click Create. You should now see the MLFlow UI

displaying the details of this experiment. Of course, there are no runs since

you just created it. You should see something like Figure A-3.

Appendix dAtAbricks

307

Something important to mention is that the experiment name in this

case is not sklearn, but rather it is /Users/sadari@bluewhale.one/sklearn

in its entirety. Whatever you see is what you will be using when setting the

experiment in the notebook code.

With that, simply click Databricks to return to the home screen.

You now have two choices:

 1. Create a new notebook and fill in the cells from scratch.

 2. Import your MLFlow scikit-learn notebook from

Chapter 4.

In this chapter, you will be importing the MLFlow scikit-learn

notebook, but you will be making a few changes in order to ensure that it is

adapted to work with Databricks.

Before you even begin with the notebook, however, you need to create

the cluster that will run your notebook code. To do this, click the New

Cluster option, and you should see something like Figure A-4.

Figure A-4. Cluster creation UI in the community edition of
Databricks. Here, the name and the 7.2 ML runtime are autofilled

Appendix dAtAbricks

308

Make sure that you have the same runtime as in Figure A-4, or at least

something that has “ML” in the runtime name. Once finished, click the

Create Cluster option.

After that, you’ll be taken to a UI that shows all the clusters you have.

Refresh if the cluster does not immediately show up. This can take a bit, so

in the meantime, let’s head back to the home screen.

At this point, you can proceed with your notebook. On the left

navigation pane, click Home > Users (if it’s not selected for you), and

then click your username to open a dropdown window. You should see

something like Figure A-5.

Figure A-5. Home menu that allows you to import a notebook. Don’t
worry about the other files you see here; you are likely to only have the
experiment named sklearn and perhaps the Quickstart Notebook file

Appendix dAtAbricks

309

Click Import and navigate to your MLFlow notebook from Chapter 4 (if

you have one just for scikit-learn, that is preferable).

You will now be taken to a notebook with all the contents of the

notebook you just imported, except for the outputs.

Before you get to run this, you must import your data. To do this, refer

to Figure A-6. You must click File ➤ Upload Data in the dropdown menu.

Leaving everything else as is, click Browse and locate and upload your

credit card dataset (creditcard.csv).

This will take some time to upload due to the size of the file, but once

it is all done, click Next, which will give you code samples that tell you how

to import this file. Make sure you have selected pandas. You can now paste

this code and try to run it. In our case, we had an error stating that the file

Figure A-6. Uploading the data so that it can be accessed by this
notebook

Appendix dAtAbricks

310

did not exist, so we instead loaded it with Spark and converted it into a

pandas data frame, which does work for some reason given the same file

path.

Before you can execute anything, make sure that the cluster has

finished building. Above the first cell in the notebook, you’ll notice a bar

that says “detached.” Click it and you should see your cluster available

here. If the cluster is ready to use, there should be a green dot beside

it. Otherwise, it will have the loading circle indicating that it’s still

configuring.

Go ahead and click the cluster. Once it is finished, you should see

something like Figure A-7.

Now you can begin with the modifications to the code. Let’s start with

the import statements. Change the first cell to look like the following:

import numpy as np

import pandas as pd

import matplotlib #

import matplotlib.pyplot as plt

import seaborn as sns

import sklearn #

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

Figure A-7. An indication that the cluster is ready to use. If you see
the green dot, you can now execute the cells in the notebook

Appendix dAtAbricks

311

from sklearn.metrics import roc_auc_score, plot_roc_curve,

confusion_matrix, accuracy_score

from sklearn.model_selection import KFold

import pyspark

from pyspark.sql import SparkSession

from pyspark import SparkConf, SparkContext

import os

import mlflow

import mlflow.sklearn

print("Numpy: {}".format(np.__version__))

print("Pandas: {}".format(pd.__version__))

print("matplotlib: {}".format(matplotlib.__version__))

print("seaborn: {}".format(sns.__version__))

print("Scikit-Learn: {}".format(sklearn.__version__))

print("MLFlow: {}".format(mlflow.__version__))

print("PySpark: {}".format(pyspark.__version__))

Here, you have added extra import statements so that you import

PySpark.

Create a new cell beneath your first cell, adding the following:

os.environ["SPARK_LOCAL_IP"]='127.0.0.1'

spark = SparkSession.builder.master("local[*]").getOrCreate()

spark.sparkContext._conf.getAll()

Appendix dAtAbricks

312

You should see something like Figure A-8 when executed.

The next cell should be where you were loading the pandas data frame.

Change it to be just the following:

df = spark.read.csv("/FileStore/tables/creditcard.csv",

header = True, inferSchema = True).toPandas()

df = df.drop("Time", axis=1)

If you run this cell and the next, which should be df.head(), you

should see something like Figure A-9.

Figure A-8. Running the first two cells and ensuring you have a
Spark context

Appendix dAtAbricks

313

Figure A-9. Ensuring that you have successfully loaded the data
frame in PySpark and have converted it to pandas

At this point, simply run the rest of the code up until the cell where you

actually start the MLFlow run.

You must split up this cell to ensure everything logs to the same run.

And so, you can create a new cell if you wish, with the following content:

sk_model = LogisticRegression(random_state=None, max_iter=400,

solver='newton-cg')

mlflow.set_experiment("/Users/sadari@bluewhale.one/sklearn")

train(sk_model, x_train, y_train)

Here are the next three cells. Each text box is supposed to be its own

cell:

evaluate(sk_model, x_test, y_test)

mlflow.sklearn.log_model(sk_model, "log_reg_model")

mlflow.end_run()

Appendix dAtAbricks

314

Together, they should look like Figure A-10.

Now, run these cells. You should now see all of this logged in the

experiment.

To view your runs, click Workspace in the navigation pane, and then

click sklearn and the experiment name. You should see a run logged there.

Click it, and you should see something like Figure A-11, with all the metrics

and artifacts logged successfully.

Figure A-10. Splitting up the code to log the relevant metrics and
artifacts to ensure everything ends up in the same run. It seems
counterintuitive, but lumping it all under the same run with mlflow.
start_run() seems to cause the runs to fail

Appendix dAtAbricks

315

With that, you are now ready to deploy. Logging MLFlow runs is as

simple as in Databricks. One of the added benefits of Databricks is that

it integrates Spark within its functionality, so if you primarily want to log

PySpark models, Databricks might be ideal for you.

 Deploying to Azure
Since we have already looked at how to deploy to Azure, we will get straight

to the point. If you would like to explore this process in more detail, refer to

Chapter 6.

Figure A-11. Viewing the metrics and artifacts of the run and
ensuring they were logged successfully

Appendix dAtAbricksdAtAbricks

316

 Connecting to the Workspace
In this step, you are simply connecting to an existing workspace through

Databricks. It’s important to note that Databricks does not have azureml-

sdk installed, so you must do so yourself. Luckily, Jupyter allows you to do

this in a cell, so simply run the following:

!pip install azureml-sdk

Next, run the following, replacing all the placeholders with your own

corresponding values:

import azureml

from azureml.core import Workspace

workspace_name = "databricks-deploy" # Your workspace name

workspace_location="East US" # Your region

resource_group = "azure-mlops" #Your resource group

subscription_id = "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"

Your subscription ID above

workspace = Workspace.create(name = workspace_name,

 location = workspace_location,

 resource_group = resource_group,

 subscription_id = subscription_id,

 exist_ok=True)

When you run this, you should see something like Figure A-12 asking

you for authentication. Simply follow the instructions and you should be

good to go.

Appendix dAtAbricks

317

Figure A-12. The cell asking for authentication as you attempt to
connect to an existing workspace. Follow the instructions, and the cell
should finish with the statement, “Deployed Workspace with name
databricks-deploy. Took __ seconds”

Once this finishes, you can proceed with building and pushing a

container image using MLFlow functionality. Before you do that, make sure

to keep track of your run ID (you should be able to see this in Figure A-11),

and copy that information in the cell below:

run_id = "dabea5a03050455aa5ad4a61fa548093"

model_name = "log_reg_model"

model_uri = f"runs:/{run_id}/{model_name}"

Next up are the two cells with MLFlow code to build and push the

container image:

import mlflow.azureml

model_image, azure_model = mlflow.azureml.build_image

(model_uri=model_uri, workspace=workspace,

 model_name="sklearn_logreg",

 image_name="model",

 description="SkLearn LogReg

Model for Anomaly Detection",

 synchronous=False)

model_image.wait_for_creation(show_output=True)

Appendix dAtAbricks

318

Figure A-13. The three cells from above and their outputs. Here, you
specify a model run and then build and push a container to Azure
based on that model

Together, the cells should look like Figure A-13.

With this step finished, you are ready to deploy the model using

MLFlow Azure.

To do so, simply run the following:

azure_service, azure_model = mlflow.azureml.deploy(model_uri,

 workspace,

 service_name="sklearn-logreg",

 model_name="log-reg-model",

 synchronous=True)

With that, let’s now check the URI that you will use to query, just to

ensure that it has successfully deployed:

azure_service.scoring_uri

Appendix dAtAbricks

319

Upon success, you should see something that looks like Figure A-14 for

both output cells.

Since there is a URI, you know that your model’s been deployed

successfully. You can move on to the querying process now.

 Querying the Model
Before you make any predictions with your model, you need to define a

query function:

import requests

import json

def query(scoring_uri, inputs):

 headers = {

 "Content-Type": "application/json",

 }

Figure A-14. The output of deploying the model as well as checking
the scoring URI of the service

Appendix dAtAbricks

320

 response = requests.post(scoring_uri, data=inputs,

headers=headers)

 preds = json.loads(response.text)

 return preds

Let’s use your batch query code to query your deployed model and

get some relevant metrics. Fortunately, you should already have your

scaler object from earlier when you processed the data in the MLFlow

experiment.

Simply run the following:

test = pd.concat((normal.iloc[:1900], anomaly.iloc[:100]))

true = test.Class

test = scaler.transform(test.drop(["Class"], axis=1))

preds = []

batch_size = 80

for f in range(25):

 print(f"Batch {f}", end=" - ")

 sample = pd.DataFrame(test[f*batch_size:(f+1)*batch_size]).

to_json(orient="split")

 output = query(scoring_uri=azure_service.scoring_uri,

inputs=sample)

 resp = pd.DataFrame([output])

 preds = np.concatenate((preds, resp.values[0]))

 print("Completed")

eval_acc = accuracy_score(true, preds)

eval_auc = roc_auc_score(true, preds)

print("Eval Acc", eval_acc)

print("Eval AUC", eval_auc)

Appendix dAtAbricks

321

Your output should look somewhat like Figure A-15.

With that, you now know how to log MLFlow runs in Databricks and

deploy models to a cloud platform.

To delete the deployment, simply run the following:

azure_service.delete()

Be sure to delete all the resources that you created for this deployment

as well.

The procedure for AWS is very similar to what you did in Chapter 5, but

you just need to set up AWS to allow Databricks to access it.

Databricks has tutorials on how you can accomplish all of that as well.

One of the perks of Databricks is that they have extensive documentation

about almost everything, especially MLFlow.

Figure A-15. The output of the batch query script. If you cannot see
an output past batch 20, resize the output by holding the little arrow
on the bottom right

Appendix dAtAbricks

322

 MLFlow Model Registry
In this section, we will briefly discuss the model registry. To use the model

registry, you do need a premium subscription to Databricks and whatever

cloud platform service you choose to deploy Databricks on (either AWS or

Azure).

With MLFlow, Databricks provides built-in model registry functionality

so that users can define what stage a particular model is in. The MLFlow

Model Registry allows for greater collaboration between various teams,

letting them all develop and maintain models at various stages in the

model life cycle and manage them all in a centralized, organized region.

The user is in control of the lifecycle stage changes (experimentation,

testing, production) of the models with options between automatic and

manual control. The MLFlow Model Registry tracks the history of the

model and allows for governance in managing who is able to approve

changes.

Some concepts to know:

• Registered model: Once registered in the MLFlow

Model Registry, it has a unique name, version, stage,

and more.

• Stage: Some preset stages are None, Staging,

Production, and Archived. The user can also create

custom stages for each model version to represent its

lifecycle. Model stage transitions are either requested

or approved, depending on the user’s level of

management.

• Description: The user can annotate the model for the

team.

• Activities: MLFlow records a registered model’s

activities, providing a history of the model’s stages.

Appendix dAtAbricks

323

Some features include

• Central repository: Register MLFlow models to a

centralized location.

• Model versioning: Keep track of the version history of

models. Now, a model built for a specific task can have

several versions.

• Model stage: Model versions have stages to represent

the cycle as a whole. Together with model versioning,

older model versions can gradually become phased out

while the newest versions are sent to staging first, for

example.

• Model stage transitions: Respond to new changes

and events with automation. Training scripts can be

automated to train new models automatically and

assign them to staging, for example.

• CI/CD workflow integration: Monitor changes to the

CI/CD pipelines as new versions are registered and

have their deployment stages changed. This allows for

better governance over the deployment process.

• Model serving: MLFlow models can be served on

Databricks through REST APIs, on top of deploying

them on a cloud service like AWS or Azure.

With that, let’s look at how you can register your model in Databricks.

First, head over to your MLFlow experiment and pick a run. Scroll

down to artifacts and click the folder that contains your model. If you
don’t have premium Databricks, you won’t be able to see this Register
Model button. If you click the button and click Create New Model in the

dropdown menu, you will see something like Figure A-16.

Appendix dAtAbricks

324

Once finished, the Register Model button should be replaced by a

green checkmark and a link to the model version page of this specific

model.

On this page, you can set the model’s stage, which is one of None,

Staging, Production, or Archived if you’re only using preset stages.

Furthermore, you can add a description to this specific model.

On top of that, you can also request to change the model’s stage (and

add an optional comment to add some context), which can be approved,

rejected, or canceled.

This allows you to now keep better track of your models by knowing

their present stages. There is also support for model versioning, so there

can be multiple versions of the model, with the possibility of setting a

model stage for each, which you can view at once.

To view all the models that you registered, you can simply click the

Models tab in Databricks, as shown in Figure A-17.

Figure A-16. Registering a MLFlow model

Appendix dAtAbricks

325

With the model registry that you looked at in prior chapters, where it’s

just putting the models in a centralized area, you don’t have this type of

functionality. If you were to implement this, it would have to be through an

external program, although it’s actually a relatively simple task considering

how everything is modularized for you.

With regular MLFlow, this requires you to have a MLFlow server that

saves the runs in a mysql, myssl, sqlite, or postgresql dialect. Then, when

you open the UI that pertains to this specific server’s storage, you can

register models and have all of the MLFLow Model Registry functionality.

All of that can get pretty complicated, so Databricks takes care of it all

for you, if you have the premium version of Databricks and a subscription

to either AWS or Azure, whichever platform you deployed Databricks to.

And that’s all there is to the MLFlow Model Registry in Databricks.

With that, you now know how to run Jupyter notebooks in Databricks,

how to log MLFlow runs and conduct experiments, and how to deploy

your models to a cloud platform.

Figure A-17. The navigation pane on the left side of premium
Databricks, deployed in Azure in this instance, with the Models tab
that will take you to the model registry

Appendix dAtAbricks

326

 Summary
Databricks is a cloud platform that integrates with Amazon AWS or

Microsoft Azure. As the creator of MLFlow, Databricks integrates MLFlow

functionality into its services, allowing you to run all the MLFlow

experiments you’d like to on the cloud. Furthermore, it also takes care of

the mechanisms behind running a model registry for you, allowing you to

take full advantage of MLFlow on the cloud.

In this appendix, you learned how to import your existing notebook,

create a MLFlow experiment, and log your own MLFlow runs. On top of

that, you also looked at deploying this model to Azure within Databricks

itself, and you looked at the model registry and how it works in Databricks.

With this, you now know how to take your existing machine

learning experiments and operationalize them very easily with MLFlow.

Furthermore, you also know how to deploy your models to three different

cloud platforms: Amazon AWS, Microsoft Azure, and Google Cloud.

With this chapter, you’ve also added Databricks to that list, although it’s

mostly for running your MLFlow experiments on. That being said, you can

definitely run MLFlow experiments and log your runs on the other cloud

platforms; it’s just far easier to do so within Databricks.

Appendix dAtAbricks

327© Sridhar Alla, Suman Kalyan Adari 2021
S. Alla and S. K. Adari, Beginning MLOps with MLFlow,
https://doi.org/10.1007/978-1-4842-6549-9

Index

A, B
Analyze data, 80
AWS SageMaker

Amazon ECR, 237
attributes, 235
configuration, 232–234
container, 237
deploy a model, 238–243
ECR repository list, 238
mlruns directory, 235, 236
predictions, 243–245, 247
removing deployed

model, 250, 251
switching models, 247–249

C
Command line interface (CLI), 229
Continuous delivery, 87
Continuous integration/

continuous delivery of
pipelines, 88

automated model building, 106
automated training

pipeline, 111
data analysis, 106
deploy pipeline, 110
feature store, 105

model registry, 111
model services, 111
modularized code, 106
package store, 109, 110
reflection on setup, 112
source repository, 106
testing, 107–109
training pipeline trigger, 112
user data collection, 111

Continuous model delivery, 87, 95
automated model building, 97
automated training pipeline, 99
data analysis, 96
deploy pipeline, 99
feature store, 95, 96
model registry, 100
model services, 100
modularized code, 98
performance, 101
reflection on setup, 102–104
training pipeline trigger, 101

Convolutional neural network
(CNN), 6

Credit card data set
kaggle website page, 10
loading data set, 11–15
normal and fraudulent, 16–18
packages, 11

https://doi.org/10.1007/978-1-4842-6549-9#DOI

328

plotting
anomalies, 23
functions, 24
graphs, 22, 32, 33, 36
scatterplot, 35, 38
V12 consistency, 37
values, 21, 25–28, 30
visualize relationships, 19, 20

D
Databricks

cluster, 307
community edition, 304
definition, 303
deploying Azure, 315–319, 321
import statements, 310, 312
metrics, 314, 315
MLFlow displaying, 306
MLFlow registry, 322–325
notebook, 308–310
PySpark, 313
running experiment, 305

Data patterns, 102
Deployment stage, 89

data collection, 92
data store, 93
model deployment, 92
model services, 92

Developmental operations
(DevOps), 84, 85

E
Experimental stage, 86, 89

data analysis, 90, 91
data store, 90
model building stage, 91
process raw data, 90

F
False negatives, 57
False positives, 57

G
Google Cloud

cleaning up, 299, 300
configuration, 277
creation, 279
deploy/querying, 292–294,

296, 298
drop-down options, 283
Firewall, 288–291
install Anaconda, 286–288
MLOps-server, 283
portal screen, 278
PuTTY terminal, 285
Scikit-learn, 280
SSH, 284
storage, 278, 279
update/remove, 298, 299
VM, 281, 282

Credit card data set (cont.)

Index

329

H
Hyperparameter settings, 42, 82

I, J
Identity and Access Management

(IAM), 230

K
KFold() function, 58
k-fold cross validation, 82

L
Local model serving

deploy, 213–216
querying, 216, 217

batching, 223, 224, 226
with scaling, 220–222
without scaling, 218, 219

M, N
Machine learning

solutions
high variance, 8
identification problem, 2–6
identification training/

evaluating/validating, 6, 7
model architecture, 7
predicting, 9
tuning hyperparameter, 8

Manual implementation, 87–89
reflection on setup, 93, 94

Manual trigger, 101
Microsoft Azure

cleaning up, 270–272
configuration, 255
container image, 260
deploying, 261–263
home screen, 255
output, 261
predictions, 263–266, 268–270
production, 267, 268
workspace, 256–258

MLFlow, 125
parameter tuning

broad search, 150,
152–164

guided search, 164–170
PySpark

data processing, 200–207
training/loading, 207–212

PyTorch
checking the run, 196, 197
data processing, 184–189
loading, 198, 199
training/evaluation, 190,

191, 193–195
Scikit-Learn, 129

data processing, 129–135
loading logged model,

148–150
logging/viewing, 139–148
training/evaluating, 136–138

Index

330

TensorFlow 2.0 (Keeras), 170
checking the run, 179–181
data processing, 171–174
loading, 181–183
training/evaluation, 175–178

MLOps setups
implementation, 122, 123
manual implementation, 87

Modularization, 98
Monitoring, 83

O
Overfitting, 81

P, Q
Performance issues, 102
Pipelines and automation

data preprocessing, 115, 116
model evaluation, 118, 119
model selection, 114
model summary, 121, 122
model validation, 119, 120
testing, 113
training process, 116, 117

plot_histogram() function, 26
plot_scatter() function, 28
Principal component analysis

(PCA), 4

PySpark
data processing, 67–69, 71–73
model evaluation, 74, 76, 77
model training, 73
versions, 66

R
Raw data, 79

S
Scheduled training, 101
Scikit-learn

data processing, 43, 45–51
model evaluation, 53–57
model training, 52, 53
model validation, 58, 60–66
versions, 42

T, U
Testing, 82
Training set, 80
True negatives, 57
True positives, 57

V, W, X, Y, Z
Validation, 82, 83

Credit card data set (cont.)

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started: Data Analysis
	Introduction and Premise
	Credit Card Data Set
	Loading the Data Set
	Normal Data and Fraudulent Data
	Plotting

	Summary

	Chapter 2: Building Models
	Introduction
	Scikit-Learn
	Data Processing
	Model Training
	Model Evaluation
	Model Validation

	PySpark
	Data Processing
	Model Training
	Model Evaluation

	Summary

	Chapter 3: What Is MLOps?
	Introduction
	MLOps Setups
	Manual Implementation
	Reflection on the Setup

	Continuous Model Delivery
	Reflection on the Setup

	Continuous Integration/Continuous Delivery of Pipelines
	Reflection on the Setup

	Pipelines and Automation
	Journey Through a Pipeline
	Model Selection
	Data Preprocessing
	Training Process
	Model Evaluation
	Model Validation
	Model Summary

	How to Implement MLOps
	Summary

	Chapter 4: Introduction to MLFlow
	Introduction
	MLFlow with Scikit-Learn
	Data Processing
	Training and Evaluating with MLFlow
	Logging and Viewing MLFlow Runs
	Loading a Logged Model

	Model Validation (Parameter Tuning) with MLFlow
	Parameter Tuning – Broad Search
	Parameter Tuning – Guided Search

	MLFlow and Other Frameworks
	MLFlow with TensorFlow 2.0 (Keras)
	Data Processing
	MLFlow Run – Training and Evaluating
	MLFlow UI – Checking Your Run
	Loading an MLFlow Model

	MLFlow with PyTorch
	Data Processing
	MLFlow Run – Training and Evaluating
	MLFlow UI – Checking Your Run
	Loading an MLFlow Model

	MLFlow with PySpark
	Data Processing
	MLFlow Run – Training, UI, and Loading an MLFlow Model

	Local Model Serving
	Deploying the Model
	Querying the Model
	Querying Without Scaling
	Querying with Scaling
	Batch Querying

	Summary

	Chapter 5: Deploying in AWS
	Introduction
	Configuring AWS
	Deploying a Model to AWS SageMaker
	Making Predictions
	Switching Models
	Removing Deployed Model
	Summary

	Chapter 6: Deploying in Azure
	Introduction
	Configuring Azure
	Deploying to Azure (Dev Stage)
	Making Predictions
	Deploying to Production
	Making Predictions
	Cleaning Up
	Summary

	Chapter 7: Deploying in Google
	Introduction
	Configuring Google
	Bucket Storage
	Configuring the Virtual Machine
	Configuring the Firewall

	Deploying and Querying the Model
	Updating and Removing a Deployment
	Cleaning Up
	Summary

	Appendix: Databricks
	Introduction
	Running Experiments in Databricks
	Deploying to Azure
	Connecting to the Workspace
	Querying the Model

	MLFlow Model Registry
	Summary

	Index

